## Math 546, Final Exam, Spring 2004, Solutions

PRINT Your Name: $\qquad$
There are 17 problems on 6 pages. The exam is worth 100 points.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website on Wednesday.

## 1. (5 points) Define "centralizer". Use complete sentences.

The centralizer of the element $a$ in the group $G$ is the set of all elements in $G$ which commute with $a$.
2. (5 points) Define "normal subgroup". Use complete sentences.

The subgroup $N$ of the group $G$ is a normal subgroup if $g n g^{-1} \in N$ for all $n \in N$ and all $g \in G$.
3. ( 6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $a$ and $b$ be elements of finite order in the group $G$. Does $a b$ have to have finite order?

NO. Let $G$ be the group of rigid motions of the $x y$ plane, $\sigma$ be reflection across the $x$-axis, and $\rho$ be rotation by $\theta=\frac{2 \pi}{\sqrt{2}}$ radians. Let $a=\sigma$ and $b=\sigma \rho$. It is clear that $a$ has order 2. It is not hard to see that $b$ is reflection across the line through the origin which makes the angle $\frac{-\theta}{2}$ with the positive $x$-axis; thus, $b$ also has order 2. On the other hand, $a b=\rho$, which has infinite order; because, if $\rho^{m}$ were equal to the identity for some positive integer $m$, then $m \theta=\frac{2 m \pi}{\sqrt{2}}$ would equal an integer multiple of $2 \pi$ and $\sqrt{2}$ would be a rational number.
4. ( 6 points) Recall that each element of $\mathbb{C}$ is a point on the complex plane. Notice that $\left(\mathbb{R}^{\text {pos }}, \times\right)$ is a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$. Give a geometric description of the left cosets of $\left(\mathbb{R}^{\text {pos }}, \times\right)$ in $(\mathbb{C} \backslash\{0\}, \times)$.

The left cosets of $\left(\mathbb{R}^{\text {pos }}, \times\right)$ in $(\mathbb{C} \backslash\{0\}, \times)$ are the open rays emanating from the origin. Indeed, the left coset determined by $e^{i \theta}$ is the ray which forms the angle $\theta$ with the positive $x$-axis.
5. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $a$ be a fixed element of the group $G$. Consider the function $\rho_{a}: G \rightarrow G$, which is given by $\rho_{a}(g)=g a$, for all $g$ in $G$. Is $\rho_{a}$ onto?

YES. Take an arbitrary element $g$ in $G$. We see that $g a^{-1} \in G$ with $\rho_{a}\left(g a^{-1}\right)=g$.
6. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $a$ be a fixed element of the group $G$. Consider the function $\rho_{a}: G \rightarrow G$, which is given by $\rho_{a}(g)=g a$, for all $g$ in $G$. Is $\rho_{a}$ a homomorphism?
NO! Let $G$ be $\left(\mathbb{R}^{\text {pos }}, \times\right)$ and $a=2$. We see that $\rho_{2}(1 \cdot 1)=\rho_{2}(1)=2$. On the other hand, $\rho_{2}(1) \cdot \rho_{2}(1)=2 \cdot 2=4 \neq 2$.
7. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{5}$, which is given by $\varphi\left([n]_{10}\right)=$ $[n]_{5}$, a function?
YES! If $[n]_{10}=[m]_{10}$, then 10 divides into $n-m$ evenly, so 5 also divides into $n-m$ evenly and $[n]_{5}=[m]_{5}$.
8. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{10}$, which is given by $\varphi\left([n]_{5}\right)=$ $[n]_{10}$, a function?

NO! Observe that $[0]_{5}=[5]_{5}$, but $[0]_{10} \neq[5]_{10}$.
9. (6 points) Let $N$ be a normal subgroup of the group $G$, and let $\frac{G}{N}$ be the set of left cosets of $N$ in $G$. Prove that $\varphi: \frac{G}{N} \times \frac{G}{N} \rightarrow \frac{G}{N}$, which is given by

$$
\varphi(a N, b N)=a b N
$$

is a function.
If $a N=a^{\prime} N$ and $b N=b^{\prime} N$, then $a=a^{\prime} n_{1}$ and $b=b^{\prime} n_{2}$ for some $n_{1}$ and $n_{2}$ in $N$. We see that

$$
a b=a^{\prime} n_{1} b^{\prime} n_{2}=a^{\prime} b^{\prime}\left[\left(b^{\prime}\right)^{-1} n_{1} b^{\prime}\right] n_{2} \in a^{\prime} b^{\prime} N
$$

since $\left(b^{\prime}\right)^{-1} n_{1} b^{\prime}$ is an element of the normal subgroup $N$. It follows that $a b N=a^{\prime} b^{\prime} N$.
10. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a one-to-one and onto function. Suppose $B \subseteq \mathbb{Z}$ with $f(B) \subseteq B$. Is $f(B)=B$ ?
Let $B$ be the set of positive integers. Notice that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$, which is given by $f(n)=n+1$, is a one-to-one and onto function which carries each element of $B$ to another element of $B$. However, $f(B)$ is a proper subset of $B$, because $1 \in B$ and $f(b) \neq 1$ for any $b \in B$.
11. (6 points) What is the order of $\left([2]_{6},[2]_{4}\right)+<\left([3]_{6},[2]_{4}\right)>$ in $\frac{\mathbb{Z}_{6} \times \mathbb{Z}_{4}}{\left\langle\left[[3]_{6},[2]_{4}\right)>\right.}$ ? Explain.
Let $x$ be the element $\left([2]_{6},[2]_{4}\right)+<\left([3]_{6},[2]_{4}\right)>$ of the group $G=\frac{\mathbb{Z}_{6} \times \mathbb{Z}_{4}}{<\left([3]_{6},[2]_{4}\right)>}$. We show that $x$ has order 6 in $G$. We make our calculation in $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$. Let $N$ be the subgroup

$$
<\left([3]_{6},[2]_{4}\right)>=\left\{\left([3]_{6},[2]_{4}\right),\left([0]_{6},[0]_{4}\right)\right\}
$$

of $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$ and let $a$ be the element $\left([2]_{6},[2]_{4}\right)$ of $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$. We show that the least positive integer $n$, with $\underbrace{a+\cdots+a}_{n}$ in $N$ is 6 . Notice that none of the elements

$$
a=\left([2]_{6},[2]_{4}\right), \quad a+a=\left([4]_{6},[0]_{4}\right),
$$

$a+a+a=\left([0]_{6},[2]_{4}\right), \quad a+a+a+a=\left([2]_{6},[0]_{4}\right), \quad a+a+a+a+a=\left([4]_{6},[2]_{4}\right)$
is in $N$; but

$$
a+a+a+a+a+a=\left([0]_{6},[0]_{4}\right)
$$

and this is in $N$.
12. (6 points) Let $H$ be a non-zero subgroup of $\mathbb{Z}$. Prove that $H$ is cyclic.
The subgroup $H$ contains some element in addition to zero. Either this element or its inverse is positive. Let $h_{0}$ be the least positive element of $H$. We will show that $H=h_{0} \mathbb{Z}$. It is clear that $h_{0} \mathbb{Z} \subset H$. We complete the proof by showing that $H \subset h_{0} \mathbb{Z}$. Let $h$ be an arbitrary element of $H$. Divide $h_{0}$ into $h$ in order to obtain integers $n$ and $r$ with $h=n h_{0}+r$ with $0 \leq r<h_{0}$. We see that $r=h-n h_{0}$ is in $H$. The choice of $h_{0}$ (as the least positive element of $H$ ) forces $r$ to be zero. Thus, $h \in h_{0} \mathbb{Z}$ and the proof is complete.
13. (6 points) Let $d$ be the greatest common divisor of the integers $n$ and $m$. Prove that there exist integers $r$ and $s$ with $r n+s m=d$.

Let $H=\{r n+s m \mid r, s \in \mathbb{Z}\}$. It is clear that $H$ is a subgroup of $\mathbb{Z}$; hence, by the previous problem, $H$ is cyclic and generated by some positive integer $h_{0}$. We will show that $h_{0}=d$. Well, $n$ and $m$ are in $H$; so, $h_{0}$ is a common divisor of $n$ and $m$. But, $d$ is the greatest common divisor of $n$ and $m$; hence, $h_{0} \leq d$. On the other hand, $h_{0} \in H$; so, $h_{0}=r n+s m$ for some integers $r$ and $s$. We know that $d$ divides $n$ and $m$; so, $d$ divides $h_{0}$. It follows that $d \leq h_{0}$. Therefore, $d$ must equal $h_{0}$.

## 14. (6 points) List 6 subgroups of the Dihedral group $D_{4}$. No explanation is needed.

Some of the subgroups of $D_{4}$ are:

$$
D_{4}, \quad\{\mathrm{id}\}, \quad\left\{i d, \sigma, \sigma \rho^{2}, \rho^{2}\right\}, \quad\left\{\rho^{2}, \mathrm{id}\right\}, \quad\{\sigma, \mathrm{id}\}, \quad\{\sigma \rho, \mathrm{id}\}, \quad\left\{\sigma \rho^{2}, \mathrm{id}\right\} .
$$

15. (6 points) Prove that $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}^{\text {pos }}, \times\right)$.

Define $\varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{\text {pos }}, \times\right)$ by $\varphi(r)=e^{r}$. We see that $\varphi$ is a homomorphism because, if $r, s \in \mathbb{R}$, then

$$
\varphi(r+s)=e^{r+s}=e^{r} e^{s}=\varphi(r) \varphi(s)
$$

We see that $\varphi$ is onto. Let $t$ be a positive real number. It follows that $\ln t$ is a real number with $\varphi(\ln t)=e^{\ln t}=t$. We see that $\varphi$ is one-to-one. If $r$ and $s$ are real numbers with $\varphi(r)=\varphi(s)$, then $e^{r}=e^{s}$. Apply ln to both sides to see that $r=s$.
16. (6 points) Consider $(\mathbb{Z}, *)$, where $n * m=n+m+1$ for all integers $n$ and $m$. Is $(\mathbb{Z}, *)$ a group? Explain.

YES.
Closure: If $n$ and $m$ are in $\mathbb{Z}$, then $n * m=n+m+1$ is also in $\mathbb{Z}$.
Identity: We see that -1 is the identity element because $(-1) * a=-1+a+1=a$ for all $a$ in $\mathbb{Z}$.
Inverses: If $a$ is in $\mathbb{Z}$, then the inverse of $a$ is $-a-2$ because $a *(-a-2)=$ $a+(-a-2)+1=-1$, which is the identity element.
Associativity: If $a, b$, and $c$ are in $\mathbb{Z}$, then

$$
a *(b * c)=a *(b+c+1)=a+(b+c+1)+1=a+b+c+2
$$

and

$$
(a * b) * c=(a * b) * c=(a+b+1) * c=(a+b+1)+c+1=a+b+c+2 .
$$

These values are equal; therefore, associativity holds.
17. (6 points) $S$ be a set and let $B$ be a subset of $S$. Define

$$
H=\{\sigma \in \operatorname{Sym}(S) \mid \sigma(b) \in B \text { for all } b \in B\}
$$

Suppose $S=\{1,2,3,4,5,6\}$ and $B=\{1,3,5\}$. How many elements does $H$ have? Explain.

If $\sigma$ is in $H$, then $\sigma=\sigma^{\prime} \sigma^{\prime \prime}$, where $\sigma^{\prime}$ is a permutation of $\{2,4,6\}$ and $\sigma^{\prime \prime}$ is a permutation of $\{1,3,5\}$. There are 6 choices for $\sigma^{\prime}$ and there are 6 choices for $\sigma^{\prime \prime}$. Thus, the group $H$ has 36 elements.

