Math 546, Spring 2004, Exam 4, Solutions

PRINT Your Name: \qquad
There are 10 problems on 5 pages. The exam is worth 50 points. Each problem is worth 5 points.

I won't grade your exam until Monday. So don't be surprised if I don't e-mail your grade to you until then.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office after I have graded it. (If you like, I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website on Monday.

1. Write $(1,4)(1,2,3,4,5)(4,6,7)$ as a product of disjoint cycles.

$$
(1,2,3)(4,6,7,5) .
$$

2. Prove that the group of real numbers under addition is isomorphic to the group of positive real numbers under multiplication.

Define $\varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{\text {pos }}, \times\right)$ by $\varphi(r)=e^{r}$. We see that φ is a homomorphism because, if $r, s \in \mathbb{R}$, then

$$
\varphi(r+s)=e^{r+s}=e^{r} e^{s}=\varphi(r) \varphi(s)
$$

We see that φ is onto. Let t be a positive real number. It follows that $\ln t$ is a real number with $\varphi(\ln t)=e^{\ln t}=t$. We see that φ is one-to-one. If r and s are real numbers with $\varphi(r)=\varphi(s)$, then $e^{r}=e^{s}$. Apply ln to both sides to see that $r=s$.

Problems 3, 4, and 5 all refer to the following situation: Let S be a set and let B be a subset of S. Define

$$
H=\{\sigma \in \operatorname{Sym}(S) \mid \sigma(b) \in B \text { for all } b \in B\}
$$

3. Suppose $S=\{1,2,3,4,5\}$ and $B=\{2,3\}$. LIST the elements of H. The elements of H are

$$
(1),(14),(15),(45),(145),(154),(23),(23)(14),(23)(15),(23)(45),(23)(145),
$$

and

$$
(23)(154) .
$$

4. Return to the general situation as as described before problem three.

Assume that the set S is finite. Prove that H is a subgroup of $\operatorname{Sym}(S)$.
The group $\operatorname{Sym}(S)$ is finite. It is clear that H is not empty since the identity permutaion is in H. It suffices to prove that H is closed. Take σ and τ from H. We know that $\sigma \circ \tau \in \operatorname{Sym}(S)$. We must show that $\sigma \circ \tau \in H$. Suppose $b \in B$. Observe that $(\sigma \circ \tau)(b)=\sigma(\tau(b))$. I know that $\tau(b)$ is in B because τ is in H. I know that σ carries every element of B back into B because σ is in H. It follows that σ of the element $\tau(b)$ of B, is in B. Thus, $(\sigma \circ \tau)(b) \in B$ for all b in B and $\sigma \circ \tau \in H$.
5. Return to the general situation as described before problem three. Assume that the set S is infinite. Give an example in which H is NOT a subgroup of $\operatorname{Sym}(S)$. Explain your example thoroughly.

Let S be the set of integers and B be the set of positive integers. Notice that the function $\sigma(n)=n+1$ is a permutation of S which carries each element of B to another element of B. The inverse of σ in $\operatorname{Sym}(S)$ is σ^{-1}, where $\sigma^{-1}(n)=n-1$. But σ^{-1} is NOT in H because $1 \in B$ and $\sigma^{-1}(1)=0 \notin B$.
6. Let G be a group and a be a fixed element of G. Define $\phi: G \rightarrow G$ by $\phi(g)=a g a^{-1}$ for all $g \in G$. Prove that ϕ is a group isomorphism.

We see that ϕ is a homomorphism. If g and h are in G, then

$$
\phi(g h)=a g h a^{-1}=a g a^{-1} a h a^{-1}=\phi(g) \phi(h) .
$$

We see that ϕ is onto. Take $g \in G$. Observe that $a^{-1} g a$ is an element of G with $\phi\left(a^{-1} g a\right)=a a^{-1} g a a^{-1}=g$. We see that ϕ is one-to-one. If g and h are in G with $\phi(g)=\phi(h)$, then $a g a^{-1}=a h a^{-1}$. Multiply both sides of the equation on the left by a^{-1} and on the right by a to see that $g=h$.
7. Give two non-isomorphic groups of order 36. Explain why the groups are not isomorphic.

The groups \mathbb{Z}_{36} and $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$ each have 36 elements. These groups are not isomorphic because the element $[1]_{36}$ of \mathbb{Z}_{36} has order 36 and every element of the group $\mathbb{Z}_{6} \times \mathbb{Z}_{6}$ has order 6 or less.
8. List the elements of the group $S_{3} \times \mathbb{Z}_{2}$. What is the order of each element?

element	order
$\left((1),[0]_{2}\right)$	1
$\left((12),[0]_{2}\right)$	2
$\left((13),[0]_{2}\right)$	2
$\left((23),[0]_{2}\right)$	2
$\left((123),[0]_{2}\right)$	3
$\left((132),[0]_{2}\right)$	3
$\left((1),[1]_{2}\right)$	2
$\left((12),[1]_{2}\right)$	2
$\left((13),[1]_{2}\right)$	2
$\left((23),[1]_{2}\right)$	2
$\left((123),[1]_{2}\right)$	6
$\left((132),[1]_{2}\right)$	6

9. Exhibit an isomorphism $\phi: U \rightarrow G$, where U is the unit circle group and G is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. Tell me what G is. Tell me what ϕ is. Prove that ϕ is an isomorphism.

Let G be the subgroup

$$
\left\{\left.\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \right\rvert\, a^{2}+b^{2}=1\right\}
$$

of $\mathrm{GL}_{2}(\mathbb{R})$. Define $\phi: U \rightarrow G$ by $\phi(a+b \imath)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$. Notice that if $z=a+b \imath \in U$, then $a^{2}+b^{2}=1$; so $\phi(z)$ really is in G.
We see that ϕ is a homomorphism. Take $z=a+b \imath$ and $w=c+d \imath$ from U. Observe that

$$
\phi(z w)=\phi(a c-b d+\imath(a d+b c))=\left[\begin{array}{cc}
a c-b d & -a d-b c \\
a d+b c & a c-b d
\end{array}\right] .
$$

On the other hand,

$$
\phi(z) \phi(w)=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{cc}
a c-b d & -a d-b c \\
a d+b c & a c-b d
\end{array}\right] .
$$

Thus, $\phi(z w)=\phi(z) \phi(w)$ and ϕ is a homomorphism.
We see that ϕ is one-to-one. Take $z=a+b \imath$ and $w=c+d_{\imath}$ from U with $\phi(z)=\phi(w)$. Thus, the matrices

$$
\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]
$$

are equal. So the corresponding entries are equal. That is, $a=c$ and $b=d$. Thus, $z=w$.
We see that ϕ is onto. Take $M=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ from G. Let $z=a+b \imath$. Notice that $z \in U$ (since $a^{2}+b^{2}=1$) and $\phi(z)=M$.
10. Exhibit an isomorphism $\phi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{-2\}, *)$, where $a * b=a b+2 a+2 b+2$. Tell me what ϕ is and prove that ϕ is an isomorphism.

Define $\phi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{-2\}, *)$ by $\phi(r)=r-2$.
We see that ϕ is a homomorphism. If r and s are in $\mathbb{R} \backslash\{0\}$, then

$$
\phi(r s)=r s-2
$$

On the other hand,

$$
\begin{aligned}
\phi(r) * \phi(s) & =(r-2) *(s-2)=(r-2)(s-2)+2(r-2)+2(s-2)+2 \\
& =r s-2 s-2 r+4+2 r-4+2 s-4+2=r s-2
\end{aligned}
$$

Thus, $\phi(r s)=\phi(r) * \phi(s)$ and ϕ is a homomorphism.
We see that ϕ is a onto. Take $t \in \mathbb{R} \backslash\{-2\}$. Observe that $t+2 \in \mathbb{R} \backslash\{0\}$ and $\phi(t+2)=t$.
We see that ϕ is one-to-one. If r and s are elements of $\mathbb{R} \backslash\{0\}$ with $\phi(r)=\phi(s)$, then $r-2=s-2$. Add 2 to both sides to see that $r=s$.

