Math 546, Spring 2004, Exam 4, Solutions PRINT Your Name:______ There are 10 problems on 5 pages. The exam is worth 50 points. Each problem is worth 5 points.

I won't grade your exam until Monday. So don't be surprised if I don't e-mail your grade to you until then.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office after I have graded it. (If you like, I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website on Monday.

1. Write (1,4)(1,2,3,4,5)(4,6,7) as a product of disjoint cycles.

(1, 2, 3)(4, 6, 7, 5)

2. Prove that the group of real numbers under addition is isomorphic to the group of positive real numbers under multiplication.

Define $\varphi \colon (\mathbb{R}, +) \to (\mathbb{R}^{pos}, \times)$ by $\varphi(r) = e^r$. We see that φ is a homomorphism because, if $r, s \in \mathbb{R}$, then

$$\varphi(r+s) = e^{r+s} = e^r e^s = \varphi(r)\varphi(s).$$

We see that φ is onto. Let t be a positive real number. It follows that $\ln t$ is a real number with $\varphi(\ln t) = e^{\ln t} = t$. We see that φ is one-to-one. If r and s are real numbers with $\varphi(r) = \varphi(s)$, then $e^r = e^s$. Apply \ln to both sides to see that r = s.

Problems 3, 4, and 5 all refer to the following situation: Let S be a set and let B be a subset of S. Define

$$H = \{ \sigma \in \operatorname{Sym}(S) \mid \sigma(b) \in B \text{ for all } b \in B \}.$$

3. Suppose $S = \{1, 2, 3, 4, 5\}$ and $B = \{2, 3\}$. LIST the elements of H.

The elements of H are

$$(1), (14), (15), (45), (145), (154), (23), (23)(14), (23)(15), (23)(45), (23)(145), (2$$

and

4. Return to the general situation as as described before problem three. Assume that the set S is finite. Prove that H is a subgroup of Sym(S).

The group $\operatorname{Sym}(S)$ is finite. It is clear that H is not empty since the identity permutaion is in H. It suffices to prove that H is closed. Take σ and τ from H. We know that $\sigma \circ \tau \in \operatorname{Sym}(S)$. We must show that $\sigma \circ \tau \in H$. Suppose $b \in B$. Observe that $(\sigma \circ \tau)(b) = \sigma(\tau(b))$. I know that $\tau(b)$ is in B because τ is in H. I know that σ carries every element of B back into B because σ is in H. It follows that σ of the element $\tau(b)$ of B, is in B. Thus, $(\sigma \circ \tau)(b) \in B$ for all b in B and $\sigma \circ \tau \in H$.

5. Return to the general situation as described before problem three. Assume that the set S is infinite. Give an example in which H is NOT a subgroup of Sym(S). Explain your example thoroughly.

Let S be the set of integers and B be the set of positive integers. Notice that the function $\sigma(n) = n + 1$ is a permutation of S which carries each element of B to another element of B. The inverse of σ in Sym(S) is σ^{-1} , where $\sigma^{-1}(n) = n - 1$. But σ^{-1} is NOT in H because $1 \in B$ and $\sigma^{-1}(1) = 0 \notin B$.

6. Let G be a group and a be a fixed element of G. Define $\phi: G \to G$ by $\phi(g) = aga^{-1}$ for all $g \in G$. Prove that ϕ is a group isomorphism.

We see that ϕ is a homomorphism. If g and h are in G, then

$$\phi(gh) = agha^{-1} = aga^{-1}aha^{-1} = \phi(g)\phi(h).$$

We see that ϕ is onto. Take $g \in G$. Observe that $a^{-1}ga$ is an element of G with $\phi(a^{-1}ga) = aa^{-1}gaa^{-1} = g$. We see that ϕ is one-to-one. If g and h are in G with $\phi(g) = \phi(h)$, then $aga^{-1} = aha^{-1}$. Multiply both sides of the equation on the left by a^{-1} and on the right by a to see that g = h.

7. Give two non-isomorphic groups of order 36. Explain why the groups are not isomorphic.

The groups \mathbb{Z}_{36} and $\mathbb{Z}_6 \times \mathbb{Z}_6$ each have 36 elements. These groups are not isomorphic because the element $[1]_{36}$ of \mathbb{Z}_{36} has order 36 and every element of the group $\mathbb{Z}_6 \times \mathbb{Z}_6$ has order 6 or less.

8. List the elements of the group $S_3 \times \mathbb{Z}_2$. What is the order of each element?

element	order
$((1), [0]_2)$	1
$((12), [0]_2)$	2
$((13), [0]_2)$	2
$((23), [0]_2)$	2
$((123), [0]_2)$	3
$((132), [0]_2)$	3
$((1), [1]_2)$	2
$((12), [1]_2)$	2
$((13), [1]_2)$	2
$((23), [1]_2)$	2
$((123), [1]_2)$	6
$((132), [1]_2)$	6

9. Exhibit an isomorphism $\phi: U \to G$, where U is the unit circle group and G is a subgroup of $\operatorname{GL}_2(\mathbb{R})$. Tell me what G is. Tell me what ϕ is. Prove that ϕ is an isomorphism.

Let G be the subgroup

$$\left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \middle| a^2 + b^2 = 1 \right\}$$

of $\operatorname{GL}_2(\mathbb{R})$. Define $\phi: U \to G$ by $\phi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. Notice that if $z = a + bi \in U$, then $a^2 + b^2 = 1$; so $\phi(z)$ really is in G.

We see that ϕ is a homomorphism. Take z = a + bi and w = c + di from U. Observe that

$$\phi(zw) = \phi(ac - bd + i(ad + bc)) = \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix}$$

On the other hand,

$$\phi(z)\phi(w) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix}.$$

Thus, $\phi(zw) = \phi(z)\phi(w)$ and ϕ is a homomorphism.

We see that ϕ is one-to-one. Take z = a + bi and w = c + di from U with $\phi(z) = \phi(w)$. Thus, the matrices

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

are equal. So the corresponding entries are equal. That is, a = c and b = d. Thus, z = w.

We see that ϕ is onto. Take $M = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ from G. Let z = a + bi. Notice that $z \in U$ (since $a^2 + b^2 = 1$) and $\phi(z) = M$.

10. Exhibit an isomorphism $\phi: (\mathbb{R} \setminus \{0\}, \times) \to (\mathbb{R} \setminus \{-2\}, *)$, where a * b = ab + 2a + 2b + 2. Tell me what ϕ is and prove that ϕ is an isomorphism.

Define $\phi: (\mathbb{R} \setminus \{0\}, \times) \to (\mathbb{R} \setminus \{-2\}, *)$ by $\phi(r) = r - 2$. We see that ϕ is a homomorphism. If r and s are in $\mathbb{R} \setminus \{0\}$, then

$$\phi(rs) = rs - 2.$$

On the other hand,

$$\phi(r) * \phi(s) = (r-2) * (s-2) = (r-2)(s-2) + 2(r-2) + 2(s-2) + 2$$
$$= rs - 2s - 2r + 4 + 2r - 4 + 2s - 4 + 2 = rs - 2.$$

Thus, $\phi(rs) = \phi(r) * \phi(s)$ and ϕ is a homomorphism.

We see that ϕ is a onto. Take $t \in \mathbb{R} \setminus \{-2\}$. Observe that $t + 2 \in \mathbb{R} \setminus \{0\}$ and $\phi(t+2) = t$.

We see that ϕ is one-to-one. If r and s are elements of $\mathbb{R} \setminus \{0\}$ with $\phi(r) = \phi(s)$, then r - 2 = s - 2. Add 2 to both sides to see that r = s.