
Math 546, Exam 1, Spring, 2004 Solutions
PRINT Your Name:
There are 8 problems on 5 pages. Problems 1 and 2 are worth 7 points each. Each
of the other problems is worth 6 points.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office tomorrow by about noon,
you may pick it up any time between then and the next class. Let me know if
you are interested.

I will post the solutions on my website at about 6:30 PM today.

1. Define “group”. Use complete sentences.

A group is a set G together with an operation ∗ which satisfies the following
properties.
Closure: If a and b are elements of G , then a ∗ b is an element of G .
Associativity: If a , b , and c are elements of G , then (a ∗ b) ∗ c = a ∗ (b ∗ c) .
Identity element: There exists an element id in G with id ∗a = a and a ∗ id = a
for all a in G .
Inverses: If a is in G , then there is an element b in G with a ∗ b = id and
b ∗ a = id .

2. Exhibit a group G and two elements a and b of G with (ab)2 6= a2b2 .

Let G be the group D3 . (See problem 8, if necessary.) Let a = σ (which
is relflection across the x -axis) and b = σρ (which is reflection across the line
y = −√

3x ). We see that
(ab)2 = (σσρ)2 = ρ2

and this is rotation ccw by 240 degrees. On the other hand,

a2b2 = σ2(σρ)2 = id id = id,

since every reflection squares to become the identity function. We conclude that
(ab)2 6= a2b2 .

3. Let G be a group and let H and K be subgroups of G . Is the
intersection H ∩ K always a subgroup of G ? If yes, prove the result.
If no, show a counterexample.

Yes.
Closure. If a and b are in H ∩ K , then a and b are in H ; hence, a ∗ b is in
H , since H is a group. Also, a and b are in K ; hence, a ∗ b is in K , since K
is a group. Therefore, a ∗ b is in H ∩ K .
Associativity holds for all products in G ; hence, associativity holds on the smaller
set H ∩ K .
Identity. The identity element id of G is an element of each of the subgroups H
and K ; hence, id is in H ∩ K .
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Inverses. If a is an element of H ∩ K , then the inverse of a in G is an element
of H because H is a subgroup of G . In a similar manner, the inverse of a in G
is in K because K is a subgroup of G . Therefore, the inverse of a in G is in
H ∩ K .

4. Let G be a group and let H and K be subgroups of G . Is the union
H ∪K always a subgroup of G ? If yes, prove the result. If no, show a
counterexample.

NO.
Consider G = D3 as in problems 2 or 8. The subset H = {id, σ} is a subgroup
of G and the subset K = {id, σρ} is a subgroup of G since both sets are closed
under composition and the formation of inverses since every reflection squares to
the identity function. However, the union

H ∪ K = {id, σ, σρ}

is not a subgroup of G since this set is not closed: σ ∈ H ∪K , σρ ∈ H ∪K , but
the composition

σ(σρ) = ρ

is not in H ∪ K .

5. Let S = R \ {−2} . Define ∗ on S by a ∗ b = ab+2a+ 2b+ 2 . Prove that
(S, ∗) is a group.

Closure: Take a, b from S . We must show that a ∗ b is in S . Well,
a ∗ b = ab + 2a + 2b + 2 , which is clearly a real number. We must check that
ab + 2a + 2b + 2 is not equal to −2 . If ab + 2a + 2b + 2 were equal to −2 , then
ab + 2a + 2b + 2 = −2 ; so, ab + 2a + 2b + 4 = 0 ; that is, (a + 2)(b + 2) = 0 ; so
a = −2 or b = −2 . On the other hand, a and b are in S ; so neither a nor b is
−2 . We conclude that ab + 2a + 2b + 2 6= −2 ; therefore, ab + 2a + 2b + 2 ∈ S .

Associativity: Take a , b , and c from S . Observe that

a ∗ (b ∗ c) = a ∗ (bc + 2b + 2c + 2) = a(bc+ 2b + 2c +2) + 2a + 2(bc + 2b + 2c + 2) + 2

= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.

On the other hand,

(a ∗ b) ∗ c = (ab+2a+2b+2) ∗ c = (ab+2a+2b+2)c+2(ab+2a+2b+2)+2c +2

= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.

We see that a ∗ (b ∗ c) = (a ∗ b) ∗ c .

Identity: The number −1 is the identity element of S because a ∗ (−1) =
a(−1) + 2a + 2(−1) + 2 = a and (−1) ∗ a = (−1)a + 2(−1) + 2a + 2 = a for all
a ∈ S .
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Inverses: Take a ∈ S . The inverse of a is −3−2a
a+2 because

a ∗ −3 − 2a

a + 2
= a

−3 − 2a

a + 2
+ 2a + 2

−3 − 2a

a + 2
+ 2 =

(a + 2)(−3 − 2a)
a + 2

+ 2a + 2 =

−3 − 2a + 2a + 2 = −1.

The operation * is commutative; so, −3−2a
a+2 ∗ a is also equal to 0 . Notice, also,

that −3−2a
a+2

∈ S because −3−2a
a+2

is a real number (since a 6= −2 ) and −3−2a
a+2

is
not equal to −2 ; because if −3−2a

a+2
were equal to −2 , then −3−2a

a+2
= −2 , so

−3 − 2a = −2a − 4 ; that is, −3 = −4 .

6. Define “centralizer”. Use complete sentences.

Let g be an element in the group G . The centralizer of g in G is the set of all
elements of G which commute with g .

7. Let G = {[ a c

0 b

] | a, b, c ∈ R with a 6= 0 and b 6= 0 } . The set G forms a
group under matrix multiplication. (You do not have to prove this.)

Find the centralizer of g =
[

1 1

0 1

]
in G .

I look for {M ∈ G | gM = Mg} . A typical element M in G has the form
M =

[ a c

0 b

]
, with a, b, c ∈ R , a 6= 0 , and b 6= 0 . For such a matrix M ,

gM =
[

a b + c
0 b

]
and Mg =

[
a a + c
0 b

]
.

We conclude that M is in the centralizer of g if and only if a = b . In other
words, the centralizer of g is

{[ a c

0 a

] | a, c ∈ R with a 6= 0 }.
8. Recall that D3 is the smallest subgroup of the group of rigid motions

which contains ρ and σ , where ρ is rotation counter clockwise by
120◦ fixing the origin and σ is reflection of the xy plane across the x
axis. Recall also that the elements of D3 are: id , ρ , ρ2 , σ , σρ , and
σρ2 . Let H be the following subset of D3 :

H = {g3 | g ∈ D3}.
(a) List the elements of H .
(b) Is H a subgroup of D3 ? Explain.

The elements of H are

id3 = id, ρ3 = id, (ρ2)3 = id, σ3 = σ, (σρ)3 = σρ, and (σρ2)3 = σρ2.

That is,
H = {id, σ, σρ, σρ2}.

The set H is NOT a subgroup of D3 because H is not closed since σ ∈ H and
σρ ∈ H , but the product of σ(σρ) = ρ is not in H .


