\qquad

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 7, April 17, 2023

Find the number of cycles of each possible length in S_{5}. Find all possible orders of elements in S_{5}. (Try to do this problem without listing all of the elements of S_{5}.)

Answer: The group S_{5} has $5!=120$ elements. Each element of S_{5} is a product of disjoint cycles. In the following discussion a, b, c, d, e are the distinct numbers $1,2,3,4,5$. Each element of S_{5} has the form id or (a, b) with $a<b$, or (a, b, c) with $a<b$ and $a<c$, or (a, b, c, d) with $a<b$ and $a<c$ and $a<d$, or (a, b, c, d, e) with $a<b$ and $a<c$ and $a<d$ and $a<e$, or $(a, b)(c, d)$ with $a<b$ and $a<c<d$, or $(a, b)(c, d, e)$ with $a<b$ and $a<c$ and $c<d$ and $c<e$. Now we count the number of elements of each shape. At the same time we record the order of each element of a given shape.

cycle structure	number	order
id	1	1
(a, b)	$\binom{5}{2}=10$	2
(a, b, c)	$2\binom{5}{3}=20$	3
(a, b, c, d)	$3!\binom{5}{4}=30$	4
(a, b, c, d, e)	$4!$	5
$(a, b)(c, d)$	$5(3)=15$	2
$(a, b)(c, d, e)$	$2\binom{5}{2}=20$	6
total	120	

There are $\binom{5}{2}$ ways to choose 2 numbers from $\{1,2,3,4,5\}$. Once you pick a two element subset of $\{1,2,3,4,5\}$, this subset corresponds to one two-cycle.

There are $\binom{5}{3}$ ways to choose 3 numbers from $\{1,2,3,4,5\}$. Once you pick a three element subset of $\{1,2,3,4,5\}$, this subset corresponds to two three-cycles.

There are $4!=245$-cycles in S_{5}. Put the smallest number (i.e., 1) first. Each order for $2,3,4,5$ gives rise to a new element of S_{5}.

There $\binom{5}{4}=5$ ways to pick a four element subset of $\{1,2,3,4,5\}$. Once you pick a four element subset of $\{1,2,3,4,5\}$, this subset corresponds to $3!=6$ four-cycles. (Put the smallest number first. Each of arrangements of the remaining three elements gives a new element of S_{5}.)

There are 5 ways to pick a four element subset of $\{1,2,3,4,5\}$. Once you select the subset $\{a, b, c, d\}$, this subset gives rise to 3 permuations of the form $(i, j)(k, \ell)$; namely $(a, b)(c, d)$, $(a, c)(b, d)$, and $(a, d)(b, c)$.

There are $\binom{5}{2}=10$ ways to separate $\{1,2,3,4,5\}$ into two subsets so that one subset has two elements and the other subset has 3 elements. The subset with two elements gives rise to one two-cycle; the subset with three elements gives rise to two three cycles.

