No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 7, April 17, 2023

Find the number of cycles of each possible length in S_5 . Find all possible orders of elements in S_5 . (Try to do this problem without listing all of the elements of S_5 .)

Answer: The group S_5 has 5! = 120 elements. Each element of S_5 is a product of disjoint cycles. In the following discussion a, b, c, d, e are the distinct numbers 1, 2, 3, 4, 5. Each element of S_5 has the form id or (a,b) with a < b, or (a,b,c) with a < b and a < c, or (a,b,c,d) with a < b and a < c and a < d, or (a,b,c,d,e) with a < b and a < c and a < d and a < c and a < c < d, or (a,b)(c,d,e) with a < b and a < c and c < d and c < e. Now we count the number of elements of each shape. At the same time we record the order of each element of a given shape.

cycle structure	number	order
id	1	1
(a,b)	$\binom{5}{2} = 10$	2
(a,b,c)	$2\binom{5}{3} = 20$	3
(a,b,c,d)	$3!\binom{5}{4} = 30$	4
(a,b,c,d,e)	4!	5
(a,b)(c,d)	5(3) = 15	2
(a,b)(c,d,e)	$2\binom{5}{2} = 20$	6
total	120	

There are $\binom{5}{2}$ ways to choose 2 numbers from $\{1, 2, 3, 4, 5\}$. Once you pick a two element subset of $\{1, 2, 3, 4, 5\}$, this subset corresponds to one two-cycle.

There are $\binom{5}{3}$ ways to choose 3 numbers from $\{1, 2, 3, 4, 5\}$. Once you pick a three element subset of $\{1, 2, 3, 4, 5\}$, this subset corresponds to two three-cycles.

There are 4! = 24 5-cycles in S_5 . Put the smallest number (i.e., 1) first. Each order for 2,3,4,5 gives rise to a new element of S_5 .

There $\binom{5}{4} = 5$ ways to pick a four element subset of $\{1, 2, 3, 4, 5\}$. Once you pick a four element subset of $\{1, 2, 3, 4, 5\}$, this subset corresponds to 3! = 6 four-cycles. (Put the smallest number first. Each of arrangements of the remaining three elements gives a new element of S_5 .)

There are 5 ways to pick a four element subset of $\{1,2,3,4,5\}$. Once you select the subset $\{a,b,c,d\}$, this subset gives rise to 3 permuations of the form $(i,j)(k,\ell)$; namely (a,b)(c,d), (a,c)(b,d), and (a,d)(b,c).

There are $\binom{5}{2} = 10$ ways to separate $\{1, 2, 3, 4, 5\}$ into two subsets so that one subset has two elements and the other subset has 3 elements. The subset with two elements gives rise to one two-cycle; the subset with three elements gives rise to two three cycles.