\qquad

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 6, October 27, 2022
Which of the following are homomorphisms? If φ is a homomorphism, then prove it. If φ is not a homomorphism, then give an example which shows that φ does not have the property of being a homomorphism.
(a) $\varphi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]$

Answer: This φ is a homomorphism. If a and b are non-zero real numbers, then

$$
\varphi(a b)=\left[\begin{array}{cc}
a b & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\varphi(a) \varphi(b)=\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a b & 0 \\
0 & 1
\end{array}\right] .
$$

(b) $\varphi:(\mathbb{R},+) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$,

Answer: This φ is a homomorphism. If a and b are real numbers, then

$$
\varphi(a+b)=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$

and

$$
\varphi(a) \varphi(b)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$

(c) $\varphi: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a$,

Recall that $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the Abelian group of 2×2 matrices with real number entries. The operation in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is matrix addition.

Answer: This φ is a homomorphism. If

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

are matrices with real entries, then

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]\right)=a+e
$$

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)+\varphi\left(\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\right)=a+e
$$

