$\qquad$

## No calculators, cell phones, computers, notes, etc.

## Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 5, October 20, 2022
Let $a$ and $b$ be elements of a group $G$. Suppose that $a$ and $b$ both have finite order that the orders of $a$ and $b$ are relatively prime. Suppose further that $a b=b a$. Prove that the order of $a b$ is equal to the order of $a$ times the order of $b$. Recall that the order of a group element $a$ is the least positive integer $n$ with $a^{n}$ equal to the identity element.
Answer: Let $n$ be the order of $a$ and $m$ be the order of $b$. Use the hypothesis that $a$ and $b$ commute to see that

$$
(a b)^{n m}=\underbrace{(a b)(a b) \cdots(a b)}_{n m \text { times }}=a^{m n} b^{m n}=\left(a^{n}\right)^{m}\left(b^{m}\right)^{n}=\mathrm{id} .
$$

Now we must show that $n m$ is the smallest positive power which sends $a b$ to the identity. Suppose the order of $a b$ is $c$. The elements $a$ and $b$ commute; hence

$$
a^{c} b^{c}=(a b)^{c}=\mathrm{id} ;
$$

thus,

$$
a^{c}=b^{-c} \in\langle a\rangle \cap\langle b\rangle .
$$

The order of $a^{c}$ divides the order of $\langle a\rangle$, which is $n$. The order of $a^{c}$ also divides the order of $\langle b\rangle$, which is $m$. Hence, the order of $a^{c}$ is a common divisor of $n$ and $m$. On the other hand, the greatest common divisor of $m$ and $n$ is 1 . Thus $a^{c}$ has order 1 ; in other words, $a^{c}$ is equal to the identity and $n$ divides $c$.

In a similar manner, $b^{-c}$ (which equals $a^{c}$ ) is also the identity; hence $b^{c}$ is equal to the identity; so $m$ divides $c$.

The numbers $n$ and $m$ are relatively prime and both numbers divide $c$. It follows that $c$ is at least as large as $n m$.

