\qquad

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 4, September 29, 2022
Let $(G, *)$ be a group and let $H=\{g \in G \mid g * g * g=\mathrm{id}\}$. Calculate H for $G=D_{4}, G=D_{3}$, and $G=U_{6}$. (Recall that U_{6} is the set of complex numbers which are sixth roots of 1.)

Answer:

The identity element G is in H for all G. If some element g of G other than the identity element is in H, then the order of g must be three (because the S of Homework problem 20 (that is $S=\left\{n \in \mathbb{Z} \mid g^{n}=\mathrm{id}\right\}$) is a subgroup of \mathbb{Z} and the only subgroup of \mathbb{Z} which contains both 2 and 3 is \mathbb{Z}).

The group D_{4} has order 8 . we know from Lagrange's Theorem that D_{4} does not contain any elements of order 3 . Thus $H=\{\mathrm{id}\}$ for D_{4}.

In D_{3} the two rotations have order 3 and the three reflections have order 2; thus the H for D_{3} is $\langle\rho\rangle$.

Let $\zeta=e^{\frac{2 \pi i}{6}}$. In U_{6}, ζ and ζ^{5} have order $6 ; \zeta^{2}$ and ζ^{4} have order 3 ; and ζ^{3} has order 2. Thus the H for U_{6} is $\left\langle\zeta^{2}\right\rangle$.

