Please PRINT your name ____

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 4, September 29, 2022

Let (G, *) be a group and let $H = \{g \in G \mid g * g * g = id\}$. Calculate H for $G = D_4$, $G = D_3$, and $G = U_6$. (Recall that U_6 is the set of complex numbers which are sixth roots of 1.)

Answer:

The identity element *G* is in *H* for all *G*. If some element *g* of *G* other than the identity element is in *H*, then the order of *g* must be three (because the *S* of Homework problem 20 (that is $S = \{n \in \mathbb{Z} \mid g^n = id\}$) is a subgroup of \mathbb{Z} and the only subgroup of \mathbb{Z} which contains both 2 and 3 is \mathbb{Z}).

The group D_4 has order 8. we know from Lagrange's Theorem that D_4 does not contain any elements of order 3. Thus $H = {id}$ for D_4 .

In D_3 the two rotations have order 3 and the three reflections have order 2; thus the *H* for D_3 is $\langle \rho \rangle$.

Let $\zeta = e^{\frac{2\pi i}{6}}$. In U_6 , ζ and ζ^5 have order 6; ζ^2 and ζ^4 have order 3; and ζ^3 has order 2. Thus the *H* for U_6 is $\langle \zeta^2 \rangle$.