Please PRINT your name _____

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 3, September 22, 2022

Let *G* be a group, and let $a \in G$. The set $C(a) = \{x \in G \mid xa = ax\}$ of all elements of *G* that commute with *a* is called the *centralizer* of *a*. Prove that C(a) is a subgroup of *G*.

Answer:

The identity element of G is in C(a).

We show that C(a) is closed. If x and y are elements of C(a), then

$$(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy);$$

hence $xy \in C(a)$.

We show that if $x \in C(a)$, then the inverse of x in G is also in C(a). If $x \in C(a)$, then xa = ax multiply both sides of the equation on the left by x^{-1} and multiply both sides of the equation on the right by a^{-1} to obtain $ax^{-1} = x^{-1}a$; hence x^{-1} is in C(a).