\qquad

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 2, September 1, 2022
Prove that a non-Abelian group must have at least five distinct elements.

Answer:

- Let G be a group.
- Notice that the identity element commutes with every element of G.
- Notice that if a is an element of G, then a commutes with a and a commutes with the inverse of a.
- Notice that if a and b are elements of G which do not commute, then $a b \neq \mathrm{id}$.
(Indeed, if $a b=\mathrm{id}$, then multiply both sides of the equation on the left by the inverse of a to see that b is equal to the inverse of a. However, a and the inverse of a commute but a and b do not commute.)
- Notice that if a and b are elements of G which do not commute, then $a b \neq a$.
(Indeed, if $a b=a$, then multiply both sides of the equation on the left by the inverse of a to see that $b=\mathrm{id}$. However a and id do commute, but a and b do not commute.)
- Notice that if a and b are elements of G which do not commute, then $a b \neq b$.
(Indeed, if $a b=b$, then multiply both sides of the equation on the right by the inverse of b to see that $a=\mathrm{id}$. However b and id do commute, but b and a do not commute.)
- Now we are ready to write the proof. If a and b are elements of the group G with $a b \neq b a$, then $a, b, a b, b a$, and id are FIVE different elements of G.

