No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 1, January 18, 2023

Let σ and τ be the following elements of S_4 :

$$\sigma(1) = 3$$
, $\sigma(2) = 2$, $\sigma(3) = 1$, $\sigma(4) = 4$, and
 $\tau(1) = 2$, $\tau(2) = 3$, $\tau(3) = 4$, $\tau(4) = 1$.

Record the multiplication table for the smallest subgroup of S_4 which contains τ and σ . Put your entries in the form $\sigma^i \circ \tau^j$ whenever this makes sense.

Answer: Calculate that $\sigma^2 = id$, $\tau^4 = id$ and $(\sigma\tau)^2 = id$. Calculate that the eight functions $\sigma^i \tau^j$, with $i \in \{0, 1\}$ and $j \in \{0, 1, 2, 3\}$ are distinct. It follows that the smallest subgroup of S_4 which contains τ and σ is the set

$$G = \{ \sigma^i \tau^j \mid i \in \{0, 1\} \text{ and } j \in \{0, 1, 2, 3\} \}.$$

Furthermore, the entire multiplication table for G is

	id	τ	τ^2	τ^3	σ	στ	$\sigma \tau^2$	$\sigma \tau^3$
id	id	τ	τ^2	τ^3	σ	στ	$\sigma \tau^2$	$\sigma \tau^3$
τ	τ	τ^2	τ^3	id	$\sigma \tau^3$	σ	στ	$\sigma \tau^2$
τ^2	τ^2	τ^3	id	τ	$\sigma \tau^2$	$\sigma \tau^3$	σ	στ
τ^3	τ^3	id	τ	τ^2	στ	$\sigma \tau^2$	$\sigma \tau^3$	σ
σ	σ	στ	$\sigma \tau^2$	$\sigma \tau^3$	id	τ	τ^2	τ^3
στ	στ	$\sigma \tau^2$	$\sigma \tau^3$	σ	τ^3	id	τ	τ^2
$\sigma \tau^2$	$\sigma \tau^2$	$\sigma \tau^3$	σ	στ	τ^2	τ^3	id	τ
$\sigma \tau^3$	$\sigma \tau^3$	σ	στ	$\sigma \tau^2$	τ	τ^2	τ^3	id