MATH 546, HOMEWORK SOLUTIONS, SPRING 2023

(1) Recall the group $S_{n}=\operatorname{Sym}(\{1, \ldots, n\})$, where S_{n} is the set of invertible functions from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. The operation in S_{n} is function composition.
(a) Take $n=3$. Let σ and τ be the following elements of S_{3} :

$$
\begin{gathered}
\sigma(1)=2, \quad \sigma(2)=1, \quad \sigma(3)=3, \quad \text { and } \\
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=1 .
\end{gathered}
$$

(i) How many distinct elements ${ }^{1}$ of S_{3} can be written in the form $\sigma^{i} \circ \tau^{j}$?
Answer: We see that $\sigma^{2}=\mathrm{id}, \tau^{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$, and $\tau^{3}=\mathrm{id}$. Thus, there are at most six elements of S_{3} of the form $\sigma^{i} \circ \tau^{j}$ because we may always insist that $i \in\{0,1\}$ and $j \in\{0,1,2\}$. We have not yet demonstrated that these six functions are distinct. But they in fact are:

i	j	$\sigma^{i} \circ \tau^{j}$
0	0	$\left(\begin{array}{lll\|}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
0	1	$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
0	2	$\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$
1	0	$\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
1	1	$\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$
1	2	$\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$

We see that there are six different functions of the form $\sigma^{i} \tau^{j}$. The group S_{3} only has six elements; thus every element of S_{3} can be written in the form $\sigma^{i} \tau^{j}$.

[^0]If one uses this notation, then

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?

Answer: We saw already that the answer is yes. We can also compute

$$
\tau \circ \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\sigma \circ \tau^{2} .
$$

(iii) Record the multiplication table for the smallest subgroup of S_{3} which contains τ and σ. Put your entries in the form $\sigma^{i} \circ \tau^{j}$ whenever this makes sense.

Answer: Here is the multiplication table for S_{3}.

	id	τ	τ^{2}	σ	$\sigma \tau$	$\sigma \tau^{2}$
id	id	τ	τ^{2}	σ	$\sigma \tau$	$\sigma \tau^{2}$
τ	τ	τ^{2}	id	$\sigma \tau^{2}$	σ	$\sigma \tau$
τ^{2}	τ^{2}	id	τ	$\sigma \tau$	$\sigma \tau^{2}$	σ
σ	σ	$\sigma \tau$	$\sigma \tau^{2}$	id	τ	τ^{2}
$\sigma \tau$	$\sigma \tau$	$\sigma \tau^{2}$	σ	τ^{2}	id	τ
$\sigma \tau^{2}$	$\sigma \tau^{2}$	σ	$\sigma \tau$	τ	τ^{2}	id

Apparently I have started to write $\sigma \tau$ to mean $\sigma \circ \tau$
Notice that the multiplication table for S_{3} is the same as the multiplication table for D_{3} in problem 10. (Each ρ from problem 10 is written as τ in the present problem.)
(b) Take $n=4$. Let σ and τ be the following elements ${ }^{2}$ of S_{4} :

$$
\begin{gathered}
\sigma(1)=3, \quad \sigma(2)=2, \quad \sigma(3)=1, \quad \sigma(4)=4, \quad \text { and } \\
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=4, \quad \tau(4)=1
\end{gathered}
$$

(i) How many distinct elements of S_{4} can be written in the form $\sigma^{i} \circ \tau^{j}$?

Answer: We see that $\sigma^{2}=\mathrm{id}, \tau^{2}=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$, $\tau^{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$, and $\tau^{4}=\mathrm{id}$. Thus, there are at most eight elements of S_{4} of the form $\sigma^{i} \circ \tau^{j}$ because we may always insist that $i \in\{0,1\}$ and $j \in\{0,1,2,3\}$. We have not yet demonstrated

[^1]that these eight functions are distinct. But they in fact are:

i	j	$\sigma^{i} \circ \tau^{j}$		
0	0	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)$		
0	1	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$		
0	2	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$		
0	3	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$		
1	0	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$		
1	1	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$		
1	2	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right)$		
1	3	$\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$		

We see that there are eight different functions of the form $\sigma^{i} \tau^{j}$.
(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?

Answer: We compute $\tau \circ \sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)=\sigma \circ \tau^{3}$.
(iii) Record the multiplication table for the smallest subgroup of S_{4} which contains τ and σ. Put your entries in the form $\sigma^{i} \circ \tau^{j}$ whenever this makes sense.

Answer: Let G be the smallest subgroup of S_{4} which contains τ and σ. We learned in (i) and (ii) that G consists of the eight distinct functions $\sigma^{i} \tau^{j}$, where $i \in\{0,1\}$ and $j \in\{0,1,2,3\}$. It is now easy to calculate that the multiplication table for G is

	id	τ	τ^{2}	τ^{3}	σ	$\sigma \tau$	$\sigma \tau^{2}$	$\sigma \tau^{3}$
id	id	τ	τ^{2}	τ^{3}	σ	$\sigma \tau$	$\sigma \tau^{2}$	$\sigma \tau^{3}$
τ	τ	τ^{2}	τ^{3}	id	$\sigma \tau^{3}$	σ	$\sigma \tau$	$\sigma \tau^{2}$
τ^{2}	τ^{2}	τ^{3}	id	τ	$\sigma \tau^{2}$	$\sigma \tau^{3}$	σ	$\sigma \tau$
τ^{3}	τ^{3}	id	τ	τ^{2}	$\sigma \tau$	$\sigma \tau^{2}$	$\sigma \tau^{3}$	σ
σ	σ	$\sigma \tau$	$\sigma \tau^{2}$	$\sigma \tau^{3}$	id	τ	τ^{2}	τ^{3}
$\sigma \tau$	$\sigma \tau$	$\sigma \tau^{2}$	$\sigma \tau^{3}$	σ	τ^{3}	id	τ	τ^{2}
$\sigma \tau^{2}$	$\sigma \tau^{2}$	$\sigma \tau^{3}$	σ	$\sigma \tau$	τ^{2}	τ^{3}	id	τ
$\sigma \tau^{3}$	$\sigma \tau^{3}$	σ	$\sigma \tau$	$\sigma \tau^{2}$	τ	τ^{2}	τ^{3}	id

Notice that the multiplication table for this problem is the same as the multiplication table for D_{4} in Example (11f) from page 9 of the Lecture

Notes. (Each ρ from the Lecture Notes is written as τ in the present problem.)
(c) Take $n=4$. Let σ and τ be the following elements of S_{4} :

$$
\begin{gathered}
\sigma(1)=2, \quad \sigma(2)=1, \quad \sigma(3)=3, \quad \sigma(4)=4, \quad \text { and } \\
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=4, \quad \tau(4)=1 .
\end{gathered}
$$

(i) How many distinct elements of S_{4} can be written in the form $\sigma^{i} \circ \tau^{j}$?

Answer: Again 8.
(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?

Answer: No.
(iii) Prove that the smallest subgroup of S_{4} which contains τ and σ is all of S_{4}.
Let H be the smallest subgroup of S_{4} which contains $\sigma=(12)$ and $\tau=(1234)$. We show that all six transpositions $(i j)$ are in H.
Every element of S_{4} is a product of transpositions.
Keep in mind that $(1234)^{-1}=(1432)$.
Observe that

$$
\begin{gathered}
(1432)(12)(1234)=(14) \in H, \\
(1432)(14)(1234)=(34) \in H, \\
(1432)(34)(1234)=(23) \in H, \\
(14)(12)(14)=(24) \in H, \text { and }, \\
(23)(12)(23)=(13) \in H .
\end{gathered}
$$

The proof is complete.
(2) Consider the following sets S with binary operation $*$. Which pairs $(S, *)$ form a group? If $(S, *)$ is not a group, which axioms fail?
(a) Let S be the set of integers \mathbb{Z} and let $a * b=a b$.

Answer: No $(S, *)$ is not a group. The identity element of S is 1 . However, the only elements of S with an inverse are 1 and -1 .
(b) Let S be the set of integers \mathbb{Z} and let $a * b=\max \{a, b\}$.

Answer: No $(S, *)$ is not a group. There is no identity element. (If one thinks that a_{0} is an identity element of S, then $a_{0}-1 \in S$, but $\left(a_{0}-1\right) *$ $a_{0}=a_{0}$. Hence $b * a_{0}$ is not equal to b for all b in S.)
Of course, then S also does not have inverses.
(c) Let S be the set of integers \mathbb{Z} and let $a * b=a-b$.

Answer: No $(S, *)$ is not a group. The operation $*$ does not associate. Indeed,

$$
(1 * 2) * 3=(1-2)-3=-4 \text { but } 1 *(2 * 3)=1-(2-3)=1+1=2 .
$$

(d) Let S be the set of integers \mathbb{Z} and $a * b=|a b|$.

Answer: No $(S, *)$ is not a group. There is no identity element. (If one thinks that a_{0} is an identity element of S, then $1=a_{0} * 1=\left|a_{0}\right|$ and $-1=a_{0} *(-1)=\left|-a_{0}\right|=\left|a_{0}\right|$; thus, $1=-1$. Of course, that makes no sense.
Also S does not have inverses.
(e) Let S be the set of positive real numbers \mathbb{R}^{+}and $a * b=a b$.

Answer: Yes, $(S, *)$ is a group.
(f) Let S be the set of non-zero rational numbers $\mathbb{Q} \backslash\{0\}$ and $a * b=a b$.

Answer: Yes, $(S, *)$ is a group.
(3) Prove that multiplication of 2×2 matrices satisfies the associative law.

Answer: Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] .
$$

We compute

$$
\begin{aligned}
A(B C) & =A\left(\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} c_{11}+b_{12} c_{21} & b_{11} c_{12}+b_{12} c_{22} \\
b_{21} c_{11}+b_{22} c_{21} & b_{21} c_{12}+b_{22} c_{22}
\end{array}\right] \\
& =\left[\begin{array}{lll}
a_{11}\left(b_{11} c_{11}+b_{12} c_{21}\right)+a_{12}\left(b_{21} c_{11}+b_{22} c_{21}\right) & a_{11}\left(b_{11} c_{12}+b_{12} c_{22}\right)+a_{12}\left(b_{21} c_{12}+b_{22} c_{22}\right) \\
a_{21}\left(b_{11} c_{11}+b_{12} c_{21}\right)+a_{22}\left(b_{21} c_{11}+b_{22} c_{21}\right) & a_{21}\left(b_{11} c_{12}+b_{12} c_{22}\right)+a_{22}\left(b_{21} c_{12}+b_{22} c_{22}\right)
\end{array}\right]
\end{aligned}
$$

and

$$
(A B) C=\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\right) C
$$

$$
=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
\left(a_{11} b_{11}+a_{12} b_{21}\right) c_{11}+\left(a_{11} b_{12}+a_{12} b_{22}\right) c_{21} & \left(a_{11} b_{11}+a_{12} b_{21}\right) c_{12}+\left(a_{11} b_{12}+a_{12} b_{22}\right) c_{22} \\
\left(a_{21} b_{11}+a_{22} b_{21}\right) c_{11}+\left(a_{21} b_{12}+a_{22} b_{22}\right) c_{21} & \left(a_{21} b_{11}+a_{22} b_{21}\right) c_{12}+\left(a_{21} b_{12}+a_{22} b_{22}\right) c_{22}
\end{array}\right]
$$

Observe that $A(B C)=(A B) C$.
(4) Is the group $\mathrm{GL}_{n}(\mathbb{R})$ an Abelian group? Give a proof or counterexample. Recall that $\mathrm{GL}_{n}(\mathbb{R})$ is the group of invertible $n \times n$ matrices under multiplication.
Answer: No $\mathrm{GL}_{n}(\mathbb{R})$ is not an Abelian group for $n \geq 2$. In particular, if
$A=\left[\begin{array}{cc|c}1 & 1 & Z_{1 \times(n-2)} \\ 0 & 1 & Z_{1 \times(n-2)} \\ \hline Z_{(n-2) \times 1} & Z_{(n-2) \times 1} & I_{n-2}\end{array}\right] \quad$ and $\quad B=\left[\begin{array}{cc|c}1 & 0 & Z_{1 \times(n-2)} \\ 1 & 1 & Z_{1 \times(n-2)} \\ \hline Z_{(n-2) \times 1} & Z_{(n-2) \times 1} & I_{n-2}\end{array}\right]$,
then
$A B=\left[\begin{array}{cc|c}2 & 1 & Z_{1 \times(n-2)} \\ 1 & 1 & Z_{1 \times(n-2)} \\ \hline Z_{(n-2) \times 1} & Z_{(n-2) \times 1} & I_{n-2}\end{array}\right]$ and $B A=\left[\begin{array}{cc|c}1 & 1 & Z_{1 \times(n-2)} \\ 1 & 2 & Z_{1 \times(n-2)} \\ \hline Z_{(n-2) \times 1} & Z_{(n-2) \times 1} & I_{n-2}\end{array}\right]$,
where $Z_{p \times q}$ is $p \times q$ matrix of zeros and I_{n-2} is the $(n-2) \times(n-2)$ identity matrix. Observe that $A B \neq B A$ and A and B both are invertible matrices.
(5) Write a multiplication table for the following set of matrices over \mathbb{Q} :

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Answer:

	I	A	B	C
I	I	A	B	C
A	A	I	C	B
B	B	C	I	A
C	C	B	A	I

Notice that this $\{I, A, B, C\}$ is a subgroup ${ }^{3}$ of $\mathrm{GL}_{2}(\mathbb{Q})$ because the multiplication table shows that $\{I, A, B, C\}$ is closed under matrix multiplication and that the inverse of every element of $\{I, A, B, C\}$ is actually in $\{I, A, B, C\}$.

The group $\{I, A, B, C\}$ is easy to recognize. The group has four elements. Every element squares to the identity and the product of any two non-identity elements is the third non-identity element. Every group of this form is called a Klein four group. "Another" ${ }^{4}$ Klein four group appears in the class lectures at the end of Example 11 on the bottom of page 9 .
(6) Let $G=\{x \in \mathbb{R} \mid 0<x$ and $x \neq 1\}$. Define $a * b=a^{\ln b}$, for a and b in G. Prove that $(G, *)$ is an Abelian group.

Answer:

- We first show that $(G, *)$ is closed. Take a and b in G. We must show that $a * b$ is in G. That is, we must show that $a^{\ln b}$ is a positive real number which is not equal to 1 . The real number a is positive, so $a^{\ln b}$ is a real number. The real number a is positive, so $a=e^{\ln a}$ and $a^{\ln b}=e^{\ln a \ln b}$. The graph of $y=e^{x}$ is ABOVE the x-axis for all x. Thus $a^{\ln b}$ is a positive real number. We prove that $a^{\ln b} \neq 1$ by contradiction. If $a^{\ln b}=1$, then take \ln of both sides to learn that $\ln b \ln a=\ln 1=0$; hence $\ln b=0$ or $\ln a=0$; that is $b=1$ or $a=1$. But a and b are both in G; so neither is 1 . This is a contradiction. We conclude that $a^{\ln b} \neq 1$. We have shown that if a and b are in G, then $a * b$ is in G.
- We already saw that $*$ commutes. Indeed, if $a, b \in G$, then

$$
a * b=a^{\ln b}=e^{\ln a \ln b}=e^{\ln b \ln a}=b^{\ln a}=b * a
$$

[^2]- The real number e is the identity element of G. Indeed,

$$
a * e=a^{\ln e}=a^{1}=a
$$

for all a in G. We already saw that $e * a=a * e$.

- If $a \in G$, then the inverse of a is $e^{\frac{1}{\ln a}}$. First we observe that $e^{\frac{1}{\ln a}}$ is indeed an element of G. Well, a is positive and not 1 ; so $\ln a$ is a real number which is not zero. Thus, $\frac{1}{\ln a}$ is a real number which is not zero and $e^{\frac{1}{\ln a}}$ is a positive real number which is not 1 . Now we calculate

$$
a * e^{\left(\frac{1}{\ln a}\right)}=a^{\ln \left(e^{\left(\frac{1}{\ln a}\right)}\right)}=a^{\frac{1}{\ln a}}=e^{\ln a \frac{1}{\ln a}}=e^{1}=e .
$$

We already saw that $*$ commutes so we need no check that $e^{\frac{1}{\ln a}} * a=e$.

- We show that $*$ associates. Take a, b, c in G. Observe that

$$
\begin{gathered}
a *(b * c)=a *\left(b^{\ln c}\right)=a *\left(e^{(\ln b \ln c)}\right)=a^{\ln \left(e^{(\ln b \ln c)}\right)}=a^{(\ln b \ln c)} \\
=e^{\ln a(\ln b \ln c)}=e^{(\ln a \ln b) \ln c}=(a * b)^{\ln c}=(a * b) * c .
\end{gathered}
$$

Remark. In Homework problem 83 you will prove that the group $(G, *)$ is a disguised version of a very familiar group!
(7) Let $S=\mathbb{R} \backslash\{-1\}$. Define $*$ by $a * b=a+b+a b$, for a and b in S. Prove that $(S, *)$ is a group.

Answer:

- We first show that $(S, *)$ is closed. Take a and b in S. It is clear that $a * b$ is a real number. We must show that $a * b=-1$. We argue by contradiction. If $a * b=-1$, then $a+b+a b=-1$; so $a b+a+b+1=0$. In other words, $(a+1)(b+1)=0$ and $a=-1$ or $b=-1$. Neither of these outcomes is possible. Thus $a * b \neq-1$ and $a * b$ is indeed in S.
- We notice that $*$ commutes!
- Observe that 0 is the identity element of $(S, *)$ because

$$
a * 0=a+0+a(0)=a
$$

We need not check that $0 * a=a$ because we already observed that $a * b=$ $b * a$ for all a and b in S.

- We observe that $*$ associates. Indeed, if a, b, c are in S, then

$$
\begin{gathered}
a *(b * c)=a *(b+c+b c)=a+(b+c+b c)+a(b+c+b c)=(a+b+a b)+c+(a+b+a b) c \\
=a * b+c+(a * b) c=(a * b) * c .
\end{gathered}
$$

- Let a be an element of S. We observe that the inverse of a is $\frac{-a}{a+1}$. First of all, we notice that the proposed inverse is a Real number because $a \neq-1$.

We also notice that $\frac{-a}{a+1} \neq-1$ because $0 \neq-1$. Thus, the proposed inverse is an actual element of $(S, *)$. Finally, we verify that
$a *\left(\frac{-a}{a+1}\right)=a+\left(\frac{-a}{a+1}\right)+a\left(\frac{-a}{a+1}\right)=\frac{a(a+1)-a-a^{2}}{a+1}=\frac{0}{a+1}=0$.
Remark. In Homework problem 78 you will prove that the group $(S, *)$ is a disguised version of a very familiar group!
(8) Prove that a non-Abelian group must have at least five distinct elements.

Answer:

- Let G be a group.
- Notice that the identity element commutes with every element of G.
- Notice that if a is an element of G, then a commutes with a and a commutes with the inverse of a.
- Notice that if a and b are elements of G which do not commute, then $a b \neq \mathrm{id}$.
(Indeed, if $a b=\mathrm{id}$, then multiply both sides of the equation on the left by the inverse of a to see that b is equal to the inverse of a. However, a and the inverse of a commute but a and b do not commute.)
- Notice that if a and b are elements of G which do not commute, then $a b \neq a$.
(Indeed, if $a b=a$, then multiply both sides of the equation on the left by the inverse of a to see that $b=\mathrm{id}$. However a and id do commute, but a and b do not commute.)
- Notice that if a and b are elements of G which do not commute, then $a b \neq b$.
(Indeed, if $a b=b$, then multiply both sides of the equation on the right by the inverse of b to see that $a=\mathrm{id}$. However b and id do commute, but b and a do not commute.)
- Now we are ready to write the proof. If a and b are elements of the group G with $a b \neq b a$, then $a, b, a b, b a$, and id are FIVE different elements of G.
(9) Let G be a group and let a, b be elements of G. Suppose $(a b)^{2}=a^{2} b^{2}$. Prove that a and b commute.

Answer: We are given

$$
a b a b=a a b b .
$$

Multiply both sides of the equation on the left by the inverse of a and multiply both sides of the equation on the right by the inverse of b to obtain $b a=a b$.
(10) Is the group of complex numbers $\{1,-1, i,-i\}$, under multiplication, a Klein 4-group?

Answer: The above group (which we usually call U_{4}) is NOT a Klein four group. In a Klein 4 group every element squares to the identity element. The identity element of U_{4} is 1 . The elements i and $-i$ both square to -1 , which is not the identity element.

The group U_{4} is a cyclic group generated by either i or $-i$.
(11) Let ρ be rotation counterclockwise by 120° fixing the origin. Let σ be reflection of the $x y$ plane across the x axis. Let D_{3} be the smallest subgroup of the group of rigid motions which contains ρ and σ.
(a) List the elements of D_{3}.
(b) Find the multiplication table for D_{3}.
(c) Describe the action of each element of D_{3}.
(d) Show that if $\tau \in D_{3}$, then $\tau(T)=T$, where T is the triangle with vertices $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.
Answer: Notice that T is the equilateral triangle (each side has length $\sqrt{3}$) with vertices

$$
\begin{aligned}
& P=e^{0}=1, \\
& Q=e^{\frac{2 \pi i}{3}}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \text { and } \\
& R=e^{\frac{4 \pi i}{3}}=\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2} .
\end{aligned}
$$

Observe that

$$
\begin{array}{lll}
\rho(P)=Q, & \rho(Q)=R, & \rho(R)=P \\
\sigma(P)=P, & \sigma(Q)=R, & \sigma(R)=Q \\
\sigma \rho(P)=\sigma(Q)=R, & \sigma \rho(Q)=\sigma(R)=Q, \text { and } & \sigma \rho(R)=\sigma(P)=P
\end{array}
$$

So $\sigma \rho$ is reflection across the line connecting the origin and Q. (If that discussion is not sufficiently convincing to you then recall that that rotation counterclockwise by θ is the linear transformation $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ and reflection of the $x y$-plane across the line through the origin with angle θ is the linear transformation $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Use these formulas and various Trig identities to verify the claims.)

Once we are confident that $\sigma \rho$ is a reflection, then we know that

$$
(\sigma \rho)(\sigma \rho)=\mathrm{id} .
$$

Multiply both sides on the the left by σ (which is the inverse of σ) and on the right by ρ^{2} (which is the inverse of ρ) to obtain

$$
\rho \sigma=\sigma \rho^{2} .
$$

It is now clear that D_{3} has at most 6 elements; namely, $\boldsymbol{\sigma}^{j} \boldsymbol{\rho}^{k}$ with $j \in\{0,1\}$ and $k \in\{0,1,2\}$. We show that these six names are distinct functions by showing that they do six different rigid motions to T :

element	action
id	identity
ρ	rotation by 120 degrees
ρ^{2}	rotation by 240 degrees
σ	reflection across the x-axis
$\sigma \rho$	reflection across the line which joins Q to the origin
$\sigma \rho^{2}$	reflection across the line which joins R to the origin

Here is the multiplication table for D_{3}.

	id	ρ	ρ^{2}	σ	$\sigma \rho$	$\sigma \rho^{2}$
id	id	ρ	ρ^{2}	σ	$\sigma \rho$	$\sigma \rho^{2}$
ρ	ρ	ρ^{2}	id	$\sigma \rho^{2}$	σ	$\sigma \rho$
ρ^{2}	ρ^{2}	id	ρ	$\sigma \rho$	$\sigma \rho^{2}$	σ
σ	σ	$\sigma \rho$	$\sigma \rho^{2}$	id	ρ	ρ^{2}
$\sigma \rho$	$\sigma \rho$	$\sigma \rho^{2}$	σ	ρ^{2}	id	ρ
$\sigma \rho^{2}$	$\sigma \rho^{2}$	σ	$\sigma \rho$	ρ	ρ^{2}	id

(12) Suppose H and K are subgroups of the group G. Is the intersection $H \cap K$ always a subgroup of G ? If so, prove the statement. If not, give an example.

Answer: Yes, the intersection of H and K is a subgroup of G. We need only show that $H \cap K$ is non-empty, is closed under the operation of G, and if g is in $H \cap K$, then the inverse of g in G is also in $H \cap K$.

Let $*$ denote the operation in G.
Well, if g and g^{\prime} are in $H \cap K$, then g and g^{\prime} are in H and H is closed; so $g * g^{\prime} \in H$. Similarly g and g^{\prime} are in K and K is closed; so $g * g^{\prime} \in K$. Thus $g * g^{\prime} \in H \cap K$.

Let g be in $H \cap K$, let g_{1} be the inverse of g in G. The hypothesis that H is a subgroup of G ensures that g_{1} is in H. Similarly, the hypothesis that H is a subgroup of G ensures that g_{1} is in K. Thus, g_{1} is in $H \cap K$.
(13) Suppose H and K are subgroups of the group G. Is the union $H \cup K$ a always subgroup of G ? If so, is prove the statement. If not, give an example.

Answer: The union of H and K is not always a subgroup of G. Consider the Klein four group of problem 5, call it G. The subgroup $\langle A\rangle$ is equal to $\{I, A\}$ and the subgroup $\langle B\rangle$ is equal to $\{I, B\}$. However the union

$$
\langle A\rangle \cup\langle B\rangle=\{I, A, B\}
$$

is not a group because $\{I, A, B\}$ is not closed under multiplication. Indeed, $A B=C \notin\{I, A, B\}$
(14) Let G be the group of rational numbers, under addition, and let H and K be subgroups of G. Prove that if $H \neq\{0\}$ and $K \neq\{0\}$, then $H \cap K \neq\{0\}$.

Answer: The hypotheses guarantee that there are positive intgers a, b, c, d with $h=\frac{a}{b} \in H$ and $k=\frac{c}{d} \in K$. Observe that

$$
c b h=\underbrace{h+\cdots+h}_{c b \text { times }} \quad \text { and } \quad a d k=\underbrace{k+\cdots+k}_{a d \text { times }}
$$

are both equal to $a c$, which is a non-zero element of $H \cap K$.
(15) Let G be a group, and let $a \in G$. The set $C(a)=\{x \in G \mid x a=a x\}$ of all elements of G that commute with a is called the centralizer of a.
(a) Prove that $C(a)$ is a subgroup of G.

Answer: The identity element of G is in $C(a)$.
We show that $C(a)$ is closed. If x and y are elements of $C(a)$, then

$$
(x y) a=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)
$$

hence $x y \in C(a)$.
We show that if $x \in C(a)$, then the inverse of x in G is also in $C(a)$. If $x \in C(a)$, then $x a=a x$ multiply both sides of the equation on the left by x^{-1} and multiply both sides of the equation on the right by a^{-1} to obtain $a x^{-1}=x^{-1} a$; hence x^{-1} is in $C(a)$.
(b) Prove that $\langle a\rangle \subseteq C(a)$.

Answer: This is obvious because a commutes with a; so $a \in C(a)$, but $C(a)$ is a group and $\langle a\rangle$ is the smallest subgroup of G which contains a; so all of $\langle a\rangle$ must be included in $C(a)$.
(c) Find the centralizer of ρ in D_{4}.

Answer: The centralizer of ρ in D_{4} is $\langle\rho\rangle$. (Look at the multiplication table in the class notes if necessary.)
(d) Find the centralizer of ρ^{2} in D_{4}.

Answer: The centralizer of ρ^{2} in D_{4} is D_{4}. (Look at the multiplication table in the class notes if necessary.)
(e) Find the centralizer in $\mathrm{GL}_{2}(\mathbb{R})$ of the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Answer: The centralizer of $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ in $\mathrm{GL}_{2}(\mathbb{R})$ is

$$
\left\{\left.\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R} \text { and } a \neq 0\right\} .
$$

Indeed each element from the proposed answer is in $\mathrm{GL}_{n}(\mathbb{R})$ and commutes with $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$:

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & a
\end{array}\right]=\left[\begin{array}{cc}
a & a+b \\
0 & a
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a & a+b \\
0 & a
\end{array}\right] .
$$

Furthermore, if $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is in $C\left(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)$, then $a d-b d \neq 0$ and

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

Thus, $a d-b c \neq 0$ and

$$
\left[\begin{array}{cc}
a+c & b+d \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & a+b \\
c & c+d
\end{array}\right]
$$

Thus,
$a d-b c \neq 0, \quad a+c=a, \quad b+d=a+b, \quad c=c, \quad$ and $\quad d=d+c$.

Thus, $a \neq 0, c=0, a=d$.
(16) Find 6 subgroups of D_{4} in addition to D_{4} and \{id $\}$.

Answer: The subgroups $\left\langle\rho^{2}\right\rangle,\langle\sigma \rho\rangle,\left\langle\sigma \rho^{2}\right\rangle,\left\langle\sigma \rho^{3}\right\rangle$, all have order 2. The subgroups $\langle\rho\rangle$ and $\left\langle\rho^{2}, \sigma\right\rangle$ both have order 4 . The subgroup $\langle\rho\rangle$ is cyclic. The subgroup $\left\langle\rho^{2}, \sigma\right\rangle$ is not cyclic.
(17) Let U_{8} be the group of complex numbers which satisfy $x^{8}=1$. Find two subgroups of U_{8} in addition to $\{\mathrm{id}\}$ and U_{8}.

Answer: The subgroup $\langle i\rangle$ has order 4. The subgroup $\langle-1\rangle$ has order 2.
(18) Let G be the group U_{9}, which consists of all complex numbers z such that $z^{9}=1$.
(a) What is the order of each element of G ?

Answer:

element	order
1	1
$e^{(2 \pi i) / 9}$	9
$e^{(4 \pi i) / 9}$	9
$e^{(6 \pi i) / 9}$	3
$e^{(8 \pi i) / 9}$	9
$e^{(10 \pi i) / 9}$	9
$e^{(12 \pi i) / 9}$	3
$e^{(14 \pi i) / 9}$	9
$e^{(16 \pi i) / 9}$	3

(b) Which elements of G are generators of all of G. (Recall that the element g in the group G generates G, if $\langle g\rangle=G$.)

Answer: Each of the elements $e^{(2 \pi i) / 9}, e^{(4 \pi i) / 9}, e^{(8 \pi i) / 9}, e^{(10 \pi i) / 9}, e^{(14 \pi i) / 9}$, and $e^{(16 \pi i) / 9}$ is a generator of G. These elements all have order 9. The other elements of G have order 1 or 3 .
(c) Which elements g of G can be written in the form h^{2} for some $h \in G$?

Answer: Every element of G can be written as h^{2} for some h in G :

$g \in G$	$=h^{2}$ for some $h \in G$
1	$(1)^{2}$
$e^{(2 \pi i) / 9}$	$\left(e^{(10 \pi i) / 9}\right)^{2}$
$e^{(4 \pi i) / 9}$	$\left(e^{(2 \pi i) / 9}\right)^{2}$
$e^{(6 \pi i) / 9}$	$\left(e^{(12 \pi i) / 9}\right)^{2}$
$e^{(8 \pi i) / 9}$	$\left(e^{(4 \pi i) / 9}\right)^{2}$
$e^{(10 \pi i) / 9}$	$\left(e^{(14 \pi i) / 9}\right)^{2}$
$e^{(12 \pi i) / 9}$	$\left(e^{(6 \pi i) / 9}\right)^{2}$
$e^{(14 \pi i) / 9}$	$\left(e^{(16 \pi i) / 9}\right)^{2}$
$e^{(16 \pi i) / 9}$	$\left(e^{(8 \pi i) / 9}\right)^{2}$

(d) Which elements g of G can be written in the form h^{3} for some $h \in G$?

Answer: The elements $1, e^{(6 \pi i) / 9}$, and $e^{(12 \pi i) / 9}$ can be written in the form h^{3} for some $h \in G$; but no other element of g can be written in this form.

$h \in G$	h^{3}
1	1
$e^{(2 \pi i) / 9}$	$e^{(6 \pi i) / 9}$
$e^{(4 \pi i) / 9}$	$e^{(12 \pi i) / 9}$
$e^{(6 \pi i) / 9}$	1
$e^{(8 \pi i) / 9}$	$e^{(6 \pi i) / 9}$
$e^{(10 \pi i) / 9}$	$e^{(12 \pi i) / 9}$
$e^{(12 \pi i) / 9}$	1
$e^{(14 \pi i) / 9}$	$e^{(6 \pi i) / 9}$
$e^{(16 \pi i) / 9}$	$e^{(12 \pi i) / 9}$

(19) Let H be a subgroup of the integers under addition. Prove that H is a cyclic group.

Answer: If $H=\{0\}$, then H is clearly cyclic. Henceforth, we assume that H is not $\{0\}$. In this case, H has some non-zero element h in it. The inverse of h, which is $-h$ is also in H. Thus, h has a positive element in it. Let h_{0} be the smallest positive element in H. We claim that $H=\left\langle h_{0}\right\rangle$. If h is any element of H, then (by the division algorithm) $h=a h_{0}+b$ for integers ${ }^{5} a$ and b with $0 \leq b \leq h_{0}-1$. Notice that $h \in H$ and $a h_{0}$ are both in H; hence b is in H. We chose h_{0} to be the smallest positive integer in H. We see that $b<h_{0}$. We conclude that b is not positive; that is, b must be zero. Hence $h=a h_{0}$ and $H=\left\langle h_{0}\right\rangle$.
(20) Find three subgroups of D_{4} of order 4. (A subgroup of order 4 is a subgroup with 4 elements.)

Answer: The subgroups

$$
\left\{\rho, \rho^{2}, \rho^{3}, i d\right\}, \quad\left\{\rho^{2}, \sigma, \sigma \rho^{2}, i d\right\}, \quad \text { and } \quad\left\{\sigma \rho, \sigma \rho^{3}, \rho^{2}, i d\right\}
$$

of D_{4} have order 4. The first subgroup is equal to the rotation group Rot_{4}. The second group was introduced in class as a copy of the Klein 4 -group in D_{4}. The third group is the centralizer of $\sigma \rho$ in D_{4}. This is easy to check using the multiplication table for D_{4}.
(21) Let g be an element of the group G and let

$$
\begin{equation*}
S=\left\{n \in \mathbb{Z} \mid g^{n}=\mathrm{id}\right\} . \tag{0.0.1}
\end{equation*}
$$

(In other words, S is the set of integers n such that g^{n} is equal to the identity of G.) Prove that S is a subgroup of $(\mathbb{Z},+)$.

[^3](22) Consider $g=\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$ in the group $\mathrm{GL}_{2}(\mathbb{C})$. What is the set $S($ as in (0.0.1)) for g ?
(23) Consider $g=\cos \frac{2 \pi}{10}+i \sin \frac{2 \pi}{10}$ in the unit circle group U. What is the set S (as in (0.0.1)) for g ?
(24) Let $(G, *)$ be a group and let $H=\{g \in G \mid g * g * g=\mathrm{id}\}$. Calculate H for $G=D_{4}, G=D_{3}$, and $G=U_{6}$. (Recall that U_{6} is the set of complex numbers which are sixth roots of 1.)
(25) Let G be a group. Suppose that g^{2} is equal to the identity element of G for all g in G. Prove that G is an Abelian group.
(26) Let G be a finite group with an even number of elements. Prove that there must exist an element g of G with g not the identity element, but g^{2} equal to the identity element.
(27) Find an example of a group G and elements a and b in G such that a and b each have finite order, but $a b$ does not. (The element a of the group G has finite order if there exists a positive integer n with a^{n} equal to the identity element. If a does not have finite order, then a has infinite order.)

Answer: I have three answers.
Answer 1. Let \mathscr{G} be the group of rigid motions of the plane with operation composition. Let σ be reflection across the x-axis and ρ be rotation fixing the origin by 1 -radian. Notice that σ has order two and ρ has infinite order. Notice also that $\sigma \rho$ is a reflection; so $\sigma \rho$ has order two. Thus, σ and $\sigma \rho$ each have order two, but $\sigma(\sigma \rho)=\rho$ has infinite order.

Answer 2. Let \mathscr{G} be the group of rigid motions of the plane with operation composition; let ℓ_{1} and ℓ_{2} be parallel lines in the plane; and let σ_{i} be reflection across ℓ_{i}. Observe that σ_{1} and σ_{2} have order two; but $\sigma_{1} \sigma_{2}$ is translation which has infinite order.
Answer 3. Let G be the group $\operatorname{GL}(2, \mathbb{R}), A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right]$. Calculate A has order 2 ; B has order 4 , but $A B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ has infinite order. Indeed, $(A B)^{n}=\left[\begin{array}{cc}f_{n-1} & f_{n} \\ f_{n} & f_{n+1}\end{array}\right]$, where the f 's are the Fibonacci numbers: $f_{0}=0, f_{1}=1, f_{n+2}=f_{n}+f_{n+1}$ for $0 \leq n$.
(28) Let $G=D_{4}$ and let H be the subgroup of G which is generated by σ. List the left cosets of H in G.

Answer: The left cosets of H in G are:
$\operatorname{id} H=\{\mathrm{id}, \sigma\}, \quad \rho H=\left\{\rho, \sigma \rho^{3}\right\}, \quad \rho^{2} H=\left\{\rho^{2}, \sigma \rho^{2}\right\}, \quad$ and $\quad \rho^{3} H=\left\{\rho^{3}, \sigma \rho\right\}$.
(29) Let $G=U_{9}$ and let H be the subgroup of G which is generated by u^{3}, where $u=\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}$. List the left cosets of H in G.

Answer: The left cosets of H in G are
$\operatorname{id} H=\left\{i d, u^{3}, u^{6}\right\}, \quad u H=\left\{u, u^{4}, u^{7}\right\}, \quad$ and $\quad u^{2} H=\left\{u^{2}, u^{5}, u^{8}\right\}$.
(30) Let G be the group $\left(\mathbb{R}^{2},+\right)$, which consists of all column vectors with two real entries, under the operation of addition, and let H be the subgroup of G which consists of all elements of the form $\left[\begin{array}{l}a \\ a\end{array}\right]$, for some real number a. Notice that each element of G corresponds in a natural way to a point in the $x y$-plane. Describe the left cosets of H in G.

Answer: The left cosets of H in G are

$$
\left\{\left.\left[\begin{array}{c}
b \\
0
\end{array}\right]+H \right\rvert\, b \in \mathbb{R}\right\}
$$

We partition the xy-plane into lines parallel to the line $y=x$. The coset $\left[\begin{array}{l}b \\ 0\end{array}\right]+H$ is the line with slope 1 which passes through " $(b, 0)$ ". (In my geometric description, I am identifying the vector $\left[\begin{array}{c}b+a \\ a\end{array}\right]$ with the point ($a+b, b$) which sits on the usual $x y$-plane.)
(31) Let G be a group. The set $Z(G)=\{x \in G \mid x g=g x$ for all $g \in G\}$ of all elements that commute with every other element of G is called the center of G.
(a) Prove that $Z(G)$ is a subgroup of G.
(b) Show that $Z(G)=\bigcap_{a \in G} C(a)$.
(c) Find the center of D_{3}.
(d) Find the center of D_{4}.
(e) Find the center of $\mathrm{GL}_{2}(\mathbb{R})$.
(32) Let G be a cyclic group. Let a and b be elements of G such that $a \neq g^{2}$ for any $g \in G$ and $b \neq g^{2}$ for any $g \in G$. Prove that $a b$ is equal to g^{2} for some $g \in G$. What happens if the hypothesis that G is a cyclic group is removed? Is the statement still true? If so, prove it. If not, find a counterexample. Recall that the group G is cyclic if there is an element h in G such that every element of G has the form h^{n} for some integer n .
(33) Let a and b be elements of a group G. Suppose that a and b both have finite order that the orders of a and b are relatively prime. Suppose further that $a b=b a$. Prove that the order of $a b$ is equal to the order of a times the order of b. Recall that the order of a group element a is the least positive integer n with a^{n} equal to the identity element.

Answer: Let n be the order of a and m be the order of b. Use the hypothesis that a and b commute to see that

$$
(a b)^{n m}=\underbrace{(a b)(a b) \cdots(a b)}_{n m \text { times }}=a^{m n} b^{m n}=\left(a^{n}\right)^{m}\left(b^{m}\right)^{n}=\mathrm{id} .
$$

Now we must show that $n m$ is the smallest positive power which sends $a b$ to the identity. Suppose the order of $a b$ is c. The elements a and b commute; hence

$$
a^{c} b^{c}=(a b)^{c}=\mathrm{id} ;
$$

thus,

$$
a^{c}=b^{-c} \in\langle a\rangle \cap\langle b\rangle .
$$

The order of a^{c} divides the order of $\langle a\rangle$, which is n. The order of a^{c} also divides the order of $\langle b\rangle$, which is m. Hence, the order of a^{c} is a common divisor of n and m. On the other hand, the greatest common divisor of m and n is 1 . Thus a^{c} has order 1 ; in other words, a^{c} is equal to the identity and n divides c.

In a similar manner, b^{-c} (which equals a^{c}) is also the identity; hence b^{c} is equal to the identity; so m divides c.

The numbers n and m are relatively prime and both numbers divide c. It follows that c is at least as large as $n m$.
(34) True or False. If true, prove it. If false, give a counterexample. Let G be a group and let H be the subset $H=\left\{g \in G \mid g^{2}=\mathrm{id}\right\}$. Then H is a subgroup of G.
(35) (a) Compute the left and right cosets of $H=\langle\sigma\rangle$ in $G=D_{3}$.
(b) Is $g h g^{-1}$ in H for all $g \in G$ and h in H, where H and G are as given in (a)?
(c) Compute the left and right cosets of $H=\langle\rho\rangle$ in $G=D_{3}$.
(d) Is $g h g^{-1}$ in H for all $g \in G$ and h in H, where H and G are as given in (c)?

Answer:

(a) The left cosets of $\langle\sigma\rangle$ in D_{3} are $\{\mathrm{id}, \sigma\},\left\{\rho, \sigma \rho^{2}\right\}$, and $\left\{\rho^{2}, \sigma \rho\right\}$.

The right cosets of $\left\langle\sigma\right.$ in D_{3} are $\{\mathrm{id}, \sigma\},\{\rho, \sigma \rho\}$, and $\left\{\rho^{2}, \sigma \rho^{2}\right\}$.
(b) No, $\rho \sigma \rho^{-1}=\rho \sigma \rho^{2}=\sigma \rho \notin H$.
(c) The left and right cosets of $\langle\rho\rangle$ in D_{3} are $\left\{\mathrm{id}, \rho, \rho^{2}\right\}$ and $\left\{\sigma, \sigma \rho, \sigma \rho^{2}\right\}$
(d) Yes. It is obvious that $g \mathrm{Hg}^{-1} \in H$, when $g \in H$. We check the three elements of G which are not in H :

$$
\sigma H \sigma^{-1}=\left\{\sigma \operatorname{id} \sigma, \sigma \rho \sigma, \sigma \rho^{2} \sigma\right\}=\left\{\text { id }, \rho^{2}, \rho\right\}=H
$$

$$
\begin{gathered}
\sigma \rho H(\sigma \rho)^{-1}=\left\{(\sigma \rho) \operatorname{id}\left(\rho^{2} \sigma\right),(\sigma \rho) \rho\left(\rho^{2} \sigma\right),(\sigma \rho) \rho^{2}\left(\rho^{2} \sigma\right)\right\}=\left\{\operatorname{id}, \rho^{2}, \rho\right\}=H \\
\sigma \rho^{2} H\left(\sigma \rho^{2}\right)^{-1}=\left\{\left(\sigma \rho^{2}\right) \operatorname{id}(\rho \sigma),\left(\sigma \rho^{2}\right) \rho(\rho \sigma),\left(\sigma \rho^{2}\right) \rho^{2}(\rho \sigma)\right\}=\left\{\operatorname{id}, \rho^{2}, \rho\right\}=H
\end{gathered}
$$

(36) (a) Suppose that H is a subgroup of the group G with the property that $g h g^{-1}$ in H for all $g \in G$ and h in H. Let a, b, and c be elements of G with $a H=b H$, prove that $a c H=b c H$.
(b) Suppose that H is a subgroup of the group G and that a, b, and c be elements of G with $a H=b H$. Must $a c H=b c H$? Prove or give a counterexample.
Answer: (36a) We are told that $a H=b H$. It follows that $a=b h$ for some h in H. Therefore,

$$
a c H=b h c H=b c\left(c^{-1} h c\right) h H .
$$

The element $c^{-1} h c$ is in H by hypothesis; hence $\left(c^{-1} h c\right) h \in H$ and $b c\left(c^{-1} h c\right) h H=$ $b c H$. We conclude that $a c H=b c H$.
(36b) Let $G=D_{3}, H=\langle\sigma\rangle, a=\mathrm{id}, b=\sigma$, and $c=\sigma \rho$.
Observe that $a H=b H$ (that is id $H=\sigma H$),

$$
a c H=\operatorname{id} \sigma \rho H=\{\sigma \rho, \sigma \rho \sigma\}=\left\{\sigma \rho, \rho^{2}\right\}
$$

and

$$
b c H=\sigma \sigma \rho H=\rho H=\{\rho, \rho \sigma\}=\left\{\rho, \sigma \rho^{2}\right\} .
$$

In particular, $a H=b H$; however, $a c H \neq b c H$.
(37) Let G be $(\mathbb{C} \backslash\{0\}, \times)$. Describe the left cosets of the subgroup H in G where
(a) $H=U_{4}$
(b) $H=\left\{r u \mid r\right.$ is a positive real number and $\left.u \in U_{4}\right\}$.

Answer:

(37a) For each positive real number r and each angle θ with $0 \leq \theta<\frac{\pi}{2}$, the left coset $r e^{i \theta} U_{4}$ consists of four points: $r e^{i \theta}, i r e^{i \theta},-r e^{i \theta}$, and $-i r e^{i \theta}$.
(37b) For each θ with $0 \leq \theta<\frac{\pi}{2}$, the coset $e^{\theta i} H$ consists of four rays eminating from the origin: one ray makes the angle θ with the positive x-axis, one ray makes the angle θ with the positive y-axis, one ray makes the angle θ with the negative x-axis, and the final ray makes the angle θ with the negative y-axis.

Here is a solution to Questions 3.11 and 3.12 from the class notes.
3.11 Each lett coset of Vim $(\mathbb{C}, ~\{03, x)$ has the form U. for some positive real number R. These cosets partition the complex plane (withou tzero) into concentric circles

3,12 Eachleftcoset of ($\mathbb{R}^{\text {Pos }}, x$) in $(\mathbb{C} \backslash\{0\}, x)$ has the form $e^{i \theta} \mathbb{R}^{\text {pos }}$ for some real θ with $0 \leq \theta<2 \pi$. These costs partition the complexplase (without O) into rays emanating from 0

(38) Suppose that H is a subgroup of the group G and $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(a) Let h_{1} be an arbitrary element of H and g be an arbitrary element of G. Prove that there exists an element h of H with $h_{1}=g h g^{-1}$. (It is possible to give a proof which works for infinite groups as well as finite groups.)
(b) Let a, b, c, and d be elements of G with $a H=b H$ and $c H=d H$. Prove that $a c H=b d H$.
(c) Let S be the set of cosets $S=\{a H \mid a \in G\}$ of H in G. Problem 38b shows that the operation on S given by $(a H) *(b H)=a b H$ is a welldefined function. Prove that S is a group. (If you are looking for this somewhere, S is usually written as $\frac{G}{H}$ and S is called the "quotient group of $G \bmod H$ ", or the "factor group of $G \bmod H$ ". BY THE WAY: S is not a subset of anything; we have to verify all of the axioms for group. Fortunately, this is very easy.)

Answer: (38a) Let h_{1} be an arbitrary element of H and g be an arbitrary element of G. The hypothesis guarantees that $h=g^{-1} h_{1} g \in H$. Observe that

$$
g h g^{-1}=g\left(g^{-1} h_{1} g\right) g^{-1}=h .
$$

(38b) The cosets $a H$ and $b H$ are equal; so there is an element $h_{1} \in H$ with $a=b h_{1}$; and the cosets $c H$ and $d H$ are equal; so there is an element $h_{2} \in H$ with $c=d h_{2}$. Thus,

$$
a c H=b h_{1} c H=b c\left(c^{-1} h_{1} c\right) H
$$

The ambient hypothesis ensures that $c^{-1} h c \in H$. It follows that

$$
a c H=b c H=b d h_{2} H=b d H .
$$

(38c) The identity element of S is id H because if $a H$ is any element of S, then $\mathrm{id} H * a H=\operatorname{id} a H=a H$ and $a H * \operatorname{id} H=a \mathrm{id} H=a H$.

The operation in S is closed: if a and b are elements of G, then $a H$ and $b H$ are elements of H and $a H * b H$ is equal to $a b H$ which is an element of S.

The operation in S associates: if a, b, and c are elements of G, then $a H$, $b H$ and $c H$ are elements of S and
$(a H * b H) * c H=(a b H) * c H=((a b) c) * H=(a(b c)) * H=(a H) *(b c H)=a H *(b H * c H)$.
The inverse of $a H$ is $a^{-1} H$ where a^{-1} is the inverse in G of the element a of G.
(39) (a) If G is an Abelian group and H is a subgroup of G, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(b) If G is a finite group with $2 n$ elements and H is a subgroup of G with n elements, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(c) If G is a group and H is a subgroup of the center of G, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$. (The word center is defined in Problem 31.)
For future reference, a subgroup H of a group G is called a normal subgroup if $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.

Answer: Assertion (39a) is easy. If $g \in G, h \in H$, and G is Abelian, then $g h g^{-1}=h g g^{-1}=h_{1} \in H$.

Assertion (39c) is just as easy as (39a). We are given $g \in G$ and $h \in H$. We are told that each element of H commutes with every element of G. Once again, $g h g^{-1}=h g g^{-1}=h \in H$.

Assertion (39b) is more subtle. We argue by contradiction. Suppose $g \in G$ and $h \in H$ with $g h g^{-1} \notin H$. One consequence of our hypothesis (that $g h g^{-1} \notin H$) is that $g \notin H$. But there are exactly two left cosets of H in G. They are H and $g H$. Thus, $G=H \cup g H$.

We have assumed that $g h g^{-1} \notin H$. It follows that $g h g^{-1} \in g H$. In other words, there is an element $h_{1} \in H$ with $g h g^{-1}=g h_{1}$. Observe that the most recent equation forces $h g^{-1}=h_{1}$ and $h_{1}^{-1} h=g$. This is a contradiction because $g \notin H$ and $h_{1}^{-1} h$ is in H.
(40) Work out some examples of $\frac{G}{H}$ as described in problem 38c.
(a) Let $G=D_{4}$ and $H=\langle\rho\rangle$. Problem 39c tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
(b) Let $G=D_{4}$ and $H=\left\langle\rho^{2}\right\rangle$. Problem 39b tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
(c) Let $G=\mathbb{Z}$ and $H=5 \mathbb{Z}$. Problem 39a tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the addition table? Do you believe that this addition makes sense? (Notice that the elements of this $\frac{G}{H}$ look like $a+H$ because the operation in G is called + . Furthermore, the operation in $\frac{G}{H}$ is also called + ; that is, $(a+H)+(b+H)=a+b+H$.

Answer: (40a) The group $\frac{D_{4}}{\langle\rho\rangle}$ has two elements: id $*\langle\rho\rangle$ and $\sigma *\langle\rho\rangle$. The group $\frac{D_{4}}{\langle\rho\rangle}$ is the cyclic group of order two. The multiplication table is

	$\operatorname{id} *\langle\rho\rangle$	$\sigma *\langle\rho\rangle$
$\operatorname{id} *\langle\rho\rangle$	$\operatorname{id} *\langle\rho\rangle$	$\sigma *\langle\rho\rangle$
$\sigma *\langle\rho\rangle$	$\sigma *\langle\rho\rangle$	$\operatorname{id} *\langle\rho\rangle$

(40b) The group $\frac{D_{4}}{\left\langle\rho^{2}\right\rangle}$ has four elements: $\mathrm{id} *\left\langle\rho^{2}\right\rangle, \sigma *\left\langle\rho^{2}\right\rangle, \sigma \rho *\left\langle\rho^{2}\right\rangle$, and $\rho *\left\langle\rho^{2}\right\rangle$. The group is a Klein 4-group.

	$\mathrm{id} *\left\langle\rho^{2}\right\rangle$	$\sigma *\left\langle\rho^{2}\right\rangle$	$\sigma \rho *\left\langle\rho^{2}\right\rangle$	$\rho *\left\langle\rho^{2}\right\rangle$
$\mathrm{id} *\left\langle\rho^{2}\right\rangle$	$\mathrm{id} *\left\langle\rho^{2}\right\rangle$	$\sigma *\left\langle\rho^{2}\right\rangle$	$\sigma \rho *\left\langle\rho^{2}\right\rangle$	$\rho *\left\langle\rho^{2}\right\rangle$
$\sigma *\left\langle\rho^{2}\right\rangle$	$\sigma *\left\langle\rho^{2}\right\rangle$	$\operatorname{id} *\left\langle\rho^{2}\right\rangle$	$\rho *\left\langle\rho^{2}\right\rangle$	$\sigma \rho *\left\langle\rho^{2}\right\rangle$
$\sigma \rho *\left\langle\rho^{2}\right\rangle$	$\sigma \rho *\left\langle\rho^{2}\right\rangle$	$\rho *\left\langle\rho^{2}\right\rangle$	$\operatorname{id} *\left\langle\rho^{2}\right\rangle$	$\sigma *\left\langle\rho^{2}\right\rangle$
$\rho *\left\langle\rho^{2}\right\rangle$	$\rho *\left\langle\rho^{2}\right\rangle$	$\sigma \rho *\left\langle\rho^{2}\right\rangle$	$\sigma *\left\langle\rho^{2}\right\rangle$	$\operatorname{id} *\left\langle\rho^{2}\right\rangle$

(40c) The group $\frac{\mathbb{Z}}{5 \mathbb{Z}}$ is the cyclic group with five elements. The operation table is

	$0+5 \mathbb{Z}$	$1+5 \mathbb{Z}$	$2+5 \mathbb{Z}$	$3+5 \mathbb{Z}$	$4+5 \mathbb{Z}$
$0+5 \mathbb{Z}$	$0+5 \mathbb{Z}$	$1+5 \mathbb{Z}$	$2+5 \mathbb{Z}$	$3+5 \mathbb{Z}$	$4+5 \mathbb{Z}$
$1+5 \mathbb{Z}$	$1+5 \mathbb{Z}$	$2+5 Z$	$3+5 \mathbb{Z}$	$4+5 \mathbb{Z}$	$0+5 \mathbb{Z}$
$2+5 \mathbb{Z}$	$2+5 \mathbb{Z}$	$3+5 \mathbb{Z}$	$4+5 \mathbb{Z}$	$0+5 \mathbb{Z}$	$1+5 \mathbb{Z}$
$3+5 \mathbb{Z}$	$3+5 \mathbb{Z}$	$4+5 \mathbb{Z}$	$0+5 \mathbb{Z}$	$1+5 \mathbb{Z}$	$2+5 \mathbb{Z}$
$4+5 \mathbb{Z}$	$4+5 \mathbb{Z}$	$0+5 \mathbb{Z}$	$1+5 \mathbb{Z}$	$2+5 \mathbb{Z}$	$3+5 \mathbb{Z}$

(41) Prove that if N is a normal subgroup of the group G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H. The word normal is defined in problem 39.

Answer: The intersection of the two subgroups H and N of G is a subgroup of G by HW 11. It follows that $H \cap N$ is a subgroup of G and also a subgroup of H. We will show that $H \cap N$ is a normal subgroup of H. That is, we will show that if $h \in H$ and $x \in H \cap N$, then $h x h^{-1}$ is in $H \cap N$. Of course, this is obvious. Indeed, h, x, and h^{-1} are in H and H is a group; so $h x h^{-1}$ is in H. Also, N is a normal subgroup of $G, n \in N$ and $h \in H \subseteq G$. It follows that $h n h^{-1} \in N$. We have shown that $h n h^{-1}$ is in H and $h n h^{-1}$ is in N. We conclude that $h n h^{-1}$ is in $H \cap N$.
(42) Let G be a finite group, and let n be a divisor of $|G|$. Prove that if H is the only subgroup of G of order n, then H must be normal in G. (The symbol $|G|$ means the number of elements in the group G. It is often read as the order of G.)

Answer: Let g be a fixed, but arbitrary, element of G . Observe that $\mathrm{gH} g^{-1}$ is a subgroup of G of order n. The hypothesis ensures that H is the only subgroup of G of order n. It follows that $\mathrm{gHg}^{-1}=H$. Indeed, $g \mathrm{Hg}^{-1}=H$ for all $g \in G$; therefore H is a normal subgroup of G.
(43) Let H and K be normal subgroups of of the group G such that $H \cap K=\langle\mathrm{id}\rangle$ Prove that $h k=k h$ for all $h \in H$ and $k \in K$.
(44) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(0,1)\rangle}$ is an infinite cyclic group. Recall that the direct product of \mathbb{Z} with \mathbb{Z} is the group of ordered pairs (a, b), where a and b are integers. The operation is coordinate wise addition: $(a, b)+(c, d)=(a+c, b+d)$, for integers a, b, c, and d. (For a more sophisticated solution to this problem than you are able to give now, see problem 71.)
(45) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(1,1)\rangle}$ is an infinite cyclic group. (For a more sophisticated solution to this problem than you are able to give now, see problem 72.)
(46) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(2,2)\rangle}$ is not a cyclic group.
(47) Compute the group

$$
\frac{\frac{Z}{\langle 6\rangle} \times \frac{\mathbb{Z}}{\langle 4\rangle}}{\langle(\overline{2}, \overline{2})\rangle} .
$$

(For a more sophisticated solution to this problem than you are able to give now, see problem 73.)
(48) Compute the group

$$
\frac{\frac{Z}{\langle 6\rangle} \times \frac{\mathbb{Z}}{\langle 4\rangle}}{\langle(\overline{3}, \overline{2})\rangle} .
$$

(49) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 8\rangle}$.

Answer: The group $\frac{\mathbb{Z}}{\langle 8\rangle}$ is cyclic of order 8. We proved that every subgroup of a cylic group is cyclic. We also proved that a cyclic group of order n has exactly one subgroup for each divisor d of n. Indeed, if g has order n, then $\left\langle g^{n / d}\right\rangle$ is the subgroup of $\langle g\rangle$ of order d. The group $\frac{\mathbb{Z}}{\langle 8\rangle}$ has four subgroups. Each of the subgroups is cyclic.

The subgroup generated by $1+\langle 8\rangle$ has order 8 and is equal to $\frac{\mathbb{Z}}{\langle 8\rangle}$.
The subgroup generated by $2+\langle 8\rangle$ has order 4 and is equal to

$$
\{2+\langle 8\rangle, 4+\langle 8\rangle, 6+\langle 8\rangle, 0+\langle 8\rangle\} .
$$

The subgroup generated by $4+\langle 8\rangle$ has order 2 and is equal to

$$
\{4+\langle 8\rangle, 0+\langle 8\rangle\} .
$$

The subgroup generated by $0+\langle 8\rangle$ has order 1 and is equal to

$$
\{0+\langle 8\rangle\} .
$$

(50) Give a subgroup diagram of $\frac{\mathbb{Z}}{\langle 60\rangle}$.

The group $\frac{\mathbb{Z}}{\langle 60\rangle}$ is cyclic of order 60 generated by the coset $1+\langle 60\rangle$. We proved that every subgroup of a cylic group is cyclic. We also proved that a cyclic group of order n has exactly one subgroup for each divisor d of n. Indeed, if g has order n, then $\left\langle g^{n / d}\right\rangle$ is the subgroup of $\langle g\rangle$ of order d. The group $\frac{\mathbb{Z}}{\langle 60\rangle}$ has twelve subgroups; one for each divisor $1,2,3,4,5,6,10,12$,
$15,20,30,60$ of 60 . Each of the subgroups is cyclic. I found the following picture on the internet at
https://tex.stackexchange.com/questions/585941/using-tikzpicture-how-can-i-sketch-the-lattice-of-divisors-of-60

The picture represents the lattice of divisors of 60 . There is a line between two divisors a and b (with $a<b$) provided a divides b (with $\frac{b}{a}$ prime). The same picture describes the lattice of subgroups of $\frac{\mathbb{Z}}{\langle 60\rangle}$ where a represents the subgroup of $\frac{\mathbb{Z}}{\langle 60\rangle}$ generated by the coset $a+\langle 60\rangle$. There is a line between two divisors a and b (with $a<b$) provided a divides b (with $\frac{b}{a}$ prime). The line between a and b indicates that the subgroup of $\frac{\mathbb{Z}}{\langle 60\rangle}$ generated by $b+\langle 60\rangle$ is a subgroup of the subgroup of $\frac{\mathbb{Z}}{\langle 60\rangle}$ generated by $a+\langle 60\rangle$.
(51) Find the cyclic subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ generated by $\frac{\sqrt{2}+i \sqrt{2}}{2}$.
(52) Find the order of the cyclic subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ generated by i.
(53) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 4\rangle} \times \frac{\mathbb{Z}}{\langle 2\rangle}$.
(54) Define $\varphi:(\mathbb{C} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ by $\varphi(a+b i)=a^{2}+b^{2}$. Prove that φ is a homomorphism.

Answer: Let $a+b i$ and $c+d i$ be non-zero complex numbers with a, b, c, d real. We compute that

$$
\varphi(a+b i) \varphi(c+d i)=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
$$

$$
\begin{aligned}
\varphi((a+b i)(c+d i)) & =\varphi((a c-b d)+i(a d+b c))=(a c-b d)^{2}+(a d+b c)^{2} \\
& =a^{2} c^{2}-2 a b c d+b^{2} d^{2}+a^{2} d^{2}+2 a b c d+b^{2} d^{2} \\
& =a^{2} c^{2}+b^{2} c^{2}+a^{2} d^{2}+b^{2} d^{2}=a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right) \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
\end{aligned}
$$

We get the same answer both times. We conclude that φ is a homomorphism.
(55) Which of the following are homomorphisms?
(a) $\varphi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]$

Answer: This φ is a homomorphism. If a and b are non-zero real numbers, then

$$
\varphi(a b)=\left[\begin{array}{cc}
a b & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\varphi(a) \varphi(b)=\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a b & 0 \\
0 & 1
\end{array}\right] .
$$

(b) $\varphi:(\mathbb{R},+) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$

Answer: This φ is a homomorphism. If a and b are real numbers, then

$$
\varphi(a+b)=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right]
$$

and

$$
\varphi(a) \varphi(b)=\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right] .
$$

(c) $\varphi: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a$,

Recall that $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the Abelian group of 2×2 matrices with real number entries. The operation in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is matrix addition.

Answer: This φ is a homomorphism. If

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and }\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

are matrices with real entries, then

$$
\begin{gathered}
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]\right)=a+e \\
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)+\varphi\left(\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\right)=a+e
\end{gathered}
$$

(d) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a b$.

Answer: This φ is not a homomorphism. For example, if

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then A and B are in $\mathrm{GL}_{2}(\mathbb{R})$, but

$$
\varphi(A B)=\varphi(A)=1 ; \text { however } \varphi(A) \varphi(B)=1(0)=0
$$

Notice that $\varphi(B)$ is not even an element of the target of φ. The question does not even make sense!
(e) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a+d$

Answer: This φ is not a homomorphism. For example, if

$$
A=B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then A and B are in $\mathrm{GL}_{2}(\mathbb{R})$, but

$$
\varphi(A B)=\varphi(A)=2 ; \text { however } \varphi(A)+\varphi(B)=2+2=4
$$

(f) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a d-b c$.

Answer: This φ is a homomorphism. The determinant of a product is the product of the determinants. If the matrices are both invertible then their determinants are non-zero.
We can check this by hand. Take

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

from $\mathrm{GL}_{2}(\mathbb{R})$. Observe that

$$
\begin{aligned}
\varphi(A B) & =\varphi\left(\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]\right) \\
& =(a e+b g)(c f+d h)-(a f+b h)(c e+d g) \\
& =a e(c f+d h)-a f(c e+d g)+b g(c f+d h)-b h(c e+d g) \\
& =a e d h-a f d g+b g c f-b h c e \\
& =a d(e h-f g)-b c(e h-f g) \\
& =(a d-b c)(e h-f g)=\varphi(A) \varphi(B) .
\end{aligned}
$$

Are you small?
(56) Let $\varphi: G_{1} \rightarrow G_{2}$ and $\theta: G_{2} \rightarrow G_{3}$ be group homomorphisms. Prove that $\theta \circ \varphi: G_{1} \rightarrow G_{3}$ is a group homomorphism. Prove that $\operatorname{ker}(\varphi) \subseteq \operatorname{ker}(\theta \circ \varphi)$.
Answer: Let $*_{i}$ be the operation in G_{i}. Let g_{1} and g_{1}^{\prime} be elements of G_{1}. We compute

$$
\begin{aligned}
(\theta \circ \varphi)\left(g_{1} *_{1} g_{1}^{\prime}\right) & =\theta\left(\varphi\left(g_{1} *_{1} g_{1}^{\prime}\right)\right), & & \text { this is the meaning of composition, } \\
& =\theta\left(\varphi\left(g_{1}\right) *_{2} \varphi\left(g_{1}^{\prime}\right)\right), & & \text { because } \varphi \text { is a homomorphism, } \\
& =\theta\left(\varphi\left(g_{1}\right)\right) *_{3} \theta\left(\varphi\left(g_{1}^{\prime}\right)\right), & & \text { because } \theta \text { is a homomorphism, } \\
& \left.=(\theta \circ \varphi)\left(g_{1}\right)\right) *_{3}(\theta \circ \varphi)\left(g_{1}^{\prime}\right), & & \text { this is the meaning of composition. }
\end{aligned}
$$

Thus,

$$
\left.(\theta \circ \varphi)\left(g_{1} *_{1} g_{1}^{\prime}\right)=(\theta \circ \varphi)\left(g_{1}\right)\right) *_{3}(\theta \circ \varphi)\left(g_{1}^{\prime}\right),
$$

and the proof is complete.
The kernel of φ is the set of elements in the domain of φ which are sent to the identity element of the target of φ. Suppose g_{1} is in the kernel of φ. Then

$$
(\theta \circ \varphi)\left(g_{1}\right)=\theta(\mathrm{id})=\mathrm{id}
$$

because every group homomorphism carries the identity element of the source to the identity element of the target.
(57) Prove that the intersection of two normal subgroups of a group G is a normal subgroup of G.
(58) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism.
(a) Let id be the identity element of G and id^{\prime} be the identity element of G^{\prime}. Prove that $\varphi(\mathrm{id})=\mathrm{id}^{\prime}$.
(b) Let g be an element of G. Prove that φ of the inverse of g is equal to the inverse of $\varphi(g)$.
(c) The image of φ is the subset $\operatorname{im} \varphi=\{\varphi(g) \mid g \in G\}$ of G^{\prime}. Prove that $\operatorname{im} \varphi$ is a subgroup of G^{\prime}.
(d) The kernel of φ is the subset $\operatorname{ker} \varphi=\left\{g \in G \mid \varphi(g)=\mathrm{id}^{\prime}\right\}$, where id^{\prime} is the identity element of G^{\prime}. Prove that the kernel of φ is a subgroup of G.
(e) Prove that $\operatorname{ker} \varphi$ is a normal subgroup of G.
(f) Consider $\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \operatorname{ker} \varphi)=\varphi(g)$. Prove that $\bar{\varphi}$ is a FUNCTION. That is, if $g_{1} \operatorname{ker} \varphi$ and $g_{2} \operatorname{ker} \varphi$ are equal cosets, then prove that $\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right)=\bar{\varphi}\left(g_{2} \operatorname{ker} \varphi\right)$.
(g) Prove that $\bar{\varphi}$ is a group homomorphism.
(h) Prove that $\bar{\varphi}$ is onto.
(i) Prove that $\bar{\varphi}$ is one-to-one.

In problem 58, you have proven the following very important Theorem.
The First Isomorphism Theorem If $\varphi: G \rightarrow G^{\prime}$ is a group homomorphism, then $\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \operatorname{ker} \varphi)=\varphi(g)$, is a group isomorphism.
(59) Let G be a cyclic group with generator g. Consider the function $\varphi: \mathbb{Z} \rightarrow G$ which is given by $\varphi(m)=g^{m}$ for all integers m.
(a) Prove that φ is a group homomorphism.
(b) Prove that φ is onto.
(c) If G is infinite, then prove that φ is an isomorphism.
(d) If G has finite order n, then prove that G is isomorphic to $\frac{\mathbb{Z}}{n \mathbb{Z}}$. (I strongly encourage you to use the First Isomorphism Theorem.)
(60) Let S and T be sets and let $\varphi: S \rightarrow T$ be a function. Suppose that φ is one-to-one and onto.
(a) Prove that there exists a FUNCTION $\theta: T \rightarrow S$ with $\varphi \circ \theta$ equal to the identity function on T and $\theta \circ \varphi$ equal to the identity function on S. (The function θ is usually called the inverse of φ.)
(b) Prove that the function θ of part (a) is one-to-one and onto.
(c) If S and T happen to be groups and φ happens to be a group homomorphism, then prove that θ is also a group homomorphism.
(61) Let $\varphi: G \rightarrow G^{\prime}$ and $\varphi^{\prime}: G^{\prime} \rightarrow G^{\prime \prime}$ be group homomorphisms. Prove that $\varphi^{\prime} \circ \varphi: G \rightarrow G^{\prime \prime}$ is a group homomorphism.
(62) Prove that the relationship "is isomorphic to" is an equivalence relation on the class of all groups. Recall that a relation \sim on a class C is an equivalence relation if
(a) The relation \sim is reflexive. If $c \in C$, then $c \sim c$.
(b) The relation \sim is symmetric. If $c \sim c^{\prime}$ for some c and c^{\prime} in C, then $c^{\prime} \sim c$.
(c) The relation \sim is transitive. If $c \sim c^{\prime}$ and $c^{\prime} \sim c^{\prime \prime}$ for some $c, c^{\prime}, c^{\prime \prime}$ in C, then $c \sim c^{\prime \prime}$.

In problems 59 and 62, you have proven the following Theorem.

Theorem

(a) If G and G^{\prime} are infinite cyclic groups, then G and G^{\prime} are isomorphic.
(b) If G and G^{\prime} are cyclic groups of finite order n, then G and G^{\prime} are isomorphic.
(63) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that φ is one-to-one if and only if $\operatorname{ker} \varphi=\{\mathrm{id}\}$.
(64) Let m and n be non-zero integers and let H be the subset

$$
H=\{a m+b n \mid a, b \in \mathbb{Z}\}
$$

of \mathbb{Z}.
(a) Prove that H is a subgroup of \mathbb{Z}.
(b) We have shown that every subgroup of \mathbb{Z} is cyclic. So H is cyclic. Let h_{0} be a generator of H. (We can insist that h_{0} is positive.) Prove that h_{0} is a common divisor of m and n.
(c) Suppose that ℓ is an integer which happens to divide m and n. Prove that ℓ must also divide h_{0}.
(d) Notice that you have proven that h_{0} is the greatest common divisor of m and n.

In problem 64, you have proven the following result.
Lemma from Number Theory. If d is the greatest common divisor of the non-zero integers m and n, then there exist integers r and s so that

$$
d=r n+s m .
$$

Answer: We proved this in Lemma 4.6 in the class notes.
(65) Suppose m and n are relatively prime non-zero integers. Prove that the groups $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ and $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ are isomorphic. (An algebraist calls this result the Chinese Remainder Theorem.)
(66) Let G be a cyclic group of order n; let g be a generator of G; and let H be a subgroup of G of order m. Lagrange's Theorem tells us that $m \mid n$. Let d equal the integer $\frac{n}{m}$. I want you to prove that H is the subgroup of G which is generated by g^{d}. I propose a couple of steps. First of all, we know that H is cyclic, so $H=\left\langle g^{r}\right\rangle$ for some integer r.
(a) Prove that $d \mid r$.
(b) Now you know that $H=\left\langle g^{r}\right\rangle \subseteq\left\langle g^{d}\right\rangle$. Finish the proof that $H=\left\langle g^{d}\right\rangle$.

Answer: We proved this in Corollary 4.3.
(67) Define a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $(0,1)$. Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 44 than you were able to give when you first did problem 44.)
(68) Define a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $(1,1)$. Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 45 than you were able to give when you first did problem 45.)
(69) Consider $\varphi: \frac{\mathbb{Z}}{6 \mathbb{Z}} \times \frac{\mathbb{Z}}{4 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{3 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$, given by

$$
\varphi(a+6 \mathbb{Z}, b+4 \mathbb{Z})=(a+3 \mathbb{Z}, b+2 \mathbb{Z})
$$

(a) Prove that φ is a function.
(b) Prove that φ is a group homomorphism.
(c) What are the image and kernel of φ ?
(d) What does the First Isomorphism Theorem tell you?

Problem 69 gives a more sophisticated solution to problem 47 than you were able to give when you first did problem 47.
(70) Find a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto $\mathbb{Z} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$, whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ which is generated by $(2,2)$. Apply the First Isomorphism Theorem.
(71) Exhibit an isomorphism $\phi: U \rightarrow G$, where U is the unit circle group and G is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. Tell me what G is. Tell me what ϕ is. Prove that ϕ is an isomorphism.
(72) Exhibit an isomorphism $\varphi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{-2\}, *)$, where $a * b=a b+2 a+2 b+2$. Tell me what ϕ is and prove that ϕ is an isomorphism.

Answer: Define φ by $\varphi(a)=a-2$.
Observe that if $a \in \mathbb{R} \backslash\{0\}$, then $\varphi(a) \in(\mathbb{R} \backslash\{-2\}, *)$. Indeed, φ is obviously injective and surjective.

Observe also that if a and b are in the domain of φ, then

$$
\varphi(a b)=a b-2 .
$$

On the other hand,

$$
\begin{aligned}
\varphi(a) & * \varphi(b)=(a-2) *(b-2)=(a-2)(b-2)+2(a-2)+2(b-2)+2 \\
& =(a b-2 a-2 b+4)+(2 a-4)+(2 b-4)+2=a b-2=\varphi(a b) .
\end{aligned}
$$

(73) Let $H=\{\operatorname{id}, a, b, c\}$ be a Klein 4-group with $a^{2}=b^{2}=c^{2}=\mathrm{id}, a b=b a=$ $c, a c=c a=b$, and $b c=c b=a$. The group H has exactly 4 elements. Consider the function $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow H$ which is given by $\varphi(m, n)=a^{m} b^{n}$. Prove that φ is a group homomorphism. Prove that φ is onto. What is the kernel of φ ? What does the First Isomorphism Theorem tell you?
(74) Is the additive group \mathbb{C} isomorphic to the multiplicative group $(\mathbb{C} \backslash\{0\}, \times)$?
(75) Prove that every group with three elements is isomorphic to $\frac{\mathbb{Z}}{\langle 3\rangle}$.
(76) Find two Abelian groups of order 8 that are not isomorphic.
(77) Let C_{2} be the subgroup $\{1,-1\}$ of $(\mathbb{R} \backslash\{0\}, \times)$. Prove that $(\mathbb{R} \backslash\{0\}, \times)$ is isomorphic to $\left(\mathbb{R}^{\text {pos }}, \times\right) \times C_{2}$, where $\mathbb{R}^{\text {pos }}$ is the set of positive real numbers.
(78) Recall the group $(S, *)$ of problem (7). Prove that $(S, *)$ is isomorphic to $(\mathbb{R} \backslash\{0\}, \times)$.
(79) Let G be a group, and let a be a fixed element of G. Define a function $\varphi_{a}: G \rightarrow G$ by $\varphi_{a}(x)=a x a^{-1}$, for all $x \in G$. Prove that φ_{a} is an isomorphism.
(80) Let G be a group. Define $\varphi: G \rightarrow G$ by $\varphi(x)=x^{-1}$, for all $x \in G$.
(a) Prove that φ is one-to-one and onto.
(b) Prove that φ is an isomorphism if and only if G is Abelian.
(81) Define $\varphi:(\mathbb{C} \backslash\{0\}, \times) \rightarrow(\mathbb{C} \backslash\{0\}, \times)$ by $\varphi(a+b i)=a-b i$. Prove that φ is an isomorphism.
(82) Prove that $(\mathbb{C} \backslash\{0\}, \times)$ is isomorphic to the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ which consists of all matrices of the form

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

with $a^{2}+b^{2} \neq 0$
(83) Recall the group G of problem (6). Prove that G is isomorphic to the group $(\mathbb{R} \backslash\{0\}, \times)$.
(84) Consider the following permutations in S_{7} :
$\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7\end{array}\right) \quad$ and $\quad \tau=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3\end{array}\right)$.
(a) Compute $\sigma \circ \tau$.
(b) Write $\sigma \circ \tau$ as a product of disjoint cycles.
(c) Write σ and τ each as a product of transpositions.

Answer: (84a) Observe that $\sigma=(1,3,5,6), \tau=(1,2)(3,5,4,7)$ and
(84b) $\sigma \circ \tau=(1,3,5,6)(1,2)(3,5,4,7)(1,3,5,6)=(1,2,3,6)(4,7,5)$.
(84c) $\sigma=(1,3)(3,5)(5,6)$ and $\tau=(1,2)(3,5)(5,4)(4,7)$
(85) List all of the elements of S_{4}. Use cycle notation.

Answer: The elements of S_{4} are:
$(1), \quad(1,2), \quad(1,3), \quad(1,4), \quad(2,3), \quad(2,4), \quad(3,4), \quad(1,2,3), \quad(1,3,2)$,
$(1,2,4), \quad(1,4,2), \quad(1,3,4), \quad(1,4,3), \quad(2,3,4), \quad(2,4,3), \quad(1,2,3,4)$,
$(1,2,4,3), \quad(1,3,2,4), \quad(1,3,4,2), \quad(1,4,2,3), \quad(1,4,3,2), \quad(1,2)(3,4)$,

$$
(1,3)(2,4), \quad(1,4)(2,3)
$$

(86) Find the number of cycles of each possible length in S_{5}. Find all possible orders of elements in S_{5}. (Try to do this problem without listing all of the elements of S_{5}.)

Answer: The group S_{5} has $5!=120$ elements. Each element of S_{5} is a product of disjoint cycles. In the following discussion a, b, c, d, e are the distinct numbers $1,2,3,4,5$. Each element of S_{5} has the form id or (a, b) with $a<b$, or (a, b, c) with $a<b$ and $a<c$, or (a, b, c, d) with $a<b$ and $a<c$ and $a<d$, or (a, b, c, d, e) with $a<b$ and $a<c$ and $a<d$ and $a<e$, or $(a, b)(c, d)$ with $a<b$ and $a<c<d$, or $(a, b)(c, d, e)$ with $a<b$ and $a<c$
and $c<d$ and $c<e$. Now we count the number of elements of each shape. At the same time we record the order of each element of a given shape.

cycle structure	number	order
id	1	1
(a, b)	$\binom{5}{2}=10$	2
(a, b, c)	$2\binom{5}{3}=20$	3
(a, b, c, d)	$3!\binom{5}{4}=30$	4
(a, b, c, d, e)	$4!$	5
$(a, b)(c, d)$	$5(3)=15$	2
$(a, b)(c, d, e)$	$2\binom{5}{2}=20$	6
total	120	

There are $\binom{5}{2}$ ways to choose 2 numbers from $\{1,2,3,4,5\}$. Once you pick a two element subset of $\{1,2,3,4,5\}$, this subset corresponds to one two-cycle.

There are $\binom{5}{3}$ ways to choose 3 numbers from $\{1,2,3,4,5\}$. Once you pick a three element subset of $\{1,2,3,4,5\}$, this subset corresponds to two three-cycles.

There are $4!=245$-cycles in S_{5}. Put the smallest number (i.e., 1) first. Each order for $2,3,4,5$ gives rise to a new element of S_{5}.

There $\binom{5}{4}=5$ ways to pick a four element subset of $\{1,2,3,4,5\}$. Once you pick a four element subset of $\{1,2,3,4,5\}$, this subset corresponds to $3!=6$ four-cycles. (Put the smallest number first. Each of arrangements of the remaining three elements gives a new element of S_{5}.)

There are 5 ways to pick a four element subset of $\{1,2,3,4,5\}$. Once you select the subset $\{a, b, c, d\}$, this subset gives rise to 3 permuations of the form $(i, j)(k, \ell)$; namely $(a, b)(c, d),(a, c)(b, d)$, and $(a, d)(b, c)$.

There are $\binom{5}{2}=10$ ways to separate $\{1,2,3,4,5\}$ into two subsets so that one subset has two elements and the other subset has 3 elements. The subset with two elements gives rise to one two-cycle; the subset with three elements gives rise to two three cycles.
(87) Let S be a set and let a be an element of S. Prove that

$$
\{\sigma \in \operatorname{Sym}(S) \mid \sigma(a)=a\}
$$

is a subgroup of $\operatorname{Sym}(S)$. Recall that $\operatorname{Sym}(S)$ is the group of permutations of S.
Answer: Let $H=\{\sigma \in \operatorname{Sym}(S) \mid \sigma(a)=a\}$. We show that H is closed. If σ and τ are in H, then σ and τ are in $\operatorname{Sym}(S), \sigma(a)=a$, and $\tau(a)=a$. The operation o makes $\operatorname{Sym}(S)$ a group. Groups are closed; hence $\sigma \circ \tau \in$ $\operatorname{Sym}(S)$. Also, $(\sigma \circ \tau)(a)=\sigma(\tau(a))=\sigma(a)=a$ because σ and τ are both in H. We conclude that $\sigma \circ \tau$ is in H.

Keep the element σ of H. We know that $\operatorname{Sym}(S)$ is a group; so σ has an inverse σ^{-1} in $\operatorname{Sym}(S)$. We must show that σ^{-1} is in H. The function σ^{-1} undoes σ; that is, if $\sigma(x)=y$, then $\sigma^{-1}(y)=x$ for all x and y in S. In fact, $\sigma(a)=a$; hence $\sigma^{-1}(a)=a$ and σ^{-1} is in H.

Here is a solution to problems 3.11 and 3.12 from the class notes.
3.11 Each lett coset of Vim $(\mathbb{C}, ~\{03, x)$ has the form U. for some positive real number R. These cosets partition the complex plane (withou tzero) into concentric circles

3,12 Eachleftcoset of ($\mathbb{R}^{\text {Pos }}, x$) in $(\mathbb{C} \backslash\{0\}, x)$ has the form $e^{i \theta} \mathbb{R}^{\text {pos }}$ for some real θ with $0 \leq \theta<2 \pi$. These costs partition the complexplase (without O) into rays emanating from 0

Here is a solution to problem 5.7 from the Class notes. We are asked to prove that S_{n} is isomorphic to a subgroup of $\mathrm{GL}_{n}(\boldsymbol{k})$ for each field \boldsymbol{k} and each positive integer n. If σ is an element S_{n}, then let P_{σ} be the identity matrix with columns permuted according to σ; that is, put the $\sigma(1)$ column of the identity matrix first, the $\sigma(2)$ column of the identity matrix second, \ldots, and the $\sigma(n)$ column of the identity matrix last. For example, if $n=3$,

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

then

$$
P_{\sigma}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad P_{\tau}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Observe that

$$
\begin{gathered}
\tau \circ \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad P_{\tau \circ \sigma}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \text { and } \\
P_{\tau} P_{\sigma}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

It is clear that $\phi: S_{n} \rightarrow \mathrm{GL}_{n}(\boldsymbol{k})$, given by $\phi(\sigma)=P_{\sigma}$ is a well-defined injective function. "The usual manipulations" show that ϕ is a group homomorphism.

Maybe I will sketch "The usual manipulations" in case you don't have some of them from your linear algebra class. In this discussion we have three vector spaces U, V, and W. For each vector space we have a basis:

$$
\begin{aligned}
& \mathscr{B}, \text { which is } u_{1}, \ldots, u_{p}, \text { for } U, \\
& \mathscr{C}, \text { which is } v_{1}, \ldots, v_{q} \text {, for } V \text {, and } \\
& \mathscr{D}, \text { which is } w_{1}, \ldots, w_{r}, \text { for } W .
\end{aligned}
$$

We also have two linear transformations: $S: U \rightarrow V$ and $T: V \rightarrow W$. If $u \in U$, then $[u]_{\mathscr{B}}$ represents the column vector of coefficients of u with respect to the basis \mathscr{B} of U, that is

$$
[u]_{\mathscr{B}}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{p}
\end{array}\right]
$$

where $u=\sum_{i=1}^{p} \alpha_{i} u_{j}$. The coefficient vectors $[v]_{\mathscr{C}}$ and $[w]_{\mathscr{D}}$, for $v \in V$ and $w \in W$ are defined in a similar manner. The matrix for S with respect to the bases \mathscr{C} and \mathscr{B} is defined to be the $p \times q$ matrix $[S]_{\mathscr{C}, \mathscr{B}}$ whose j-th column is $\left[u_{j}\right]_{\mathscr{B}}$. One easily checks that

$$
[S]_{\mathscr{C}, \mathscr{B}}[u]_{\mathscr{B}}=[S(u)]_{\mathscr{C}}
$$

for all $u \in U$. One defines $[T]_{\mathscr{D}, \mathscr{C}}$ in a similar manner. One checks that

$$
[T]_{\mathscr{D}, \mathscr{C}}[v]_{\mathscr{C}}=[T(v)]_{\mathscr{D}}
$$

for all $v \in V$. At this point, one checks that

$$
[T \circ S]_{\mathscr{D}, \mathscr{B}}=[T]_{\mathscr{D}, \mathscr{C}} \text { times }[S]_{\mathscr{C}, \mathscr{B}}
$$

by verifying

$$
[T \circ S]_{\mathscr{D}, \mathscr{B}}[u]_{\mathscr{B}}=[T]_{\mathscr{D}, \mathscr{C}}[S]_{\mathscr{C}, \mathscr{B}}[u]_{\mathscr{B}}
$$

for each $u \in U$.
This is Problem 6.13 from the class notes. Mimic Example 6.12 from the class notes in the situation where $T=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Which polynomial plays the role of Δ ? Which elements of $\operatorname{Sym}(T)$ are in the kernel of ϕ. You might find it helpful to use cycle notation as described in section 7.A.

Observation 0.1. Suppose that permutation σ in S_{n} is a product of a transpositions and also is a product of b transpositions. We claim that a and b are both even or a and b are both odd.

Proof. It suffices to show that $(-1)^{a}=(-1)^{b}$. Consider the homomorphism

$$
\phi: \operatorname{Sym}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) \rightarrow \operatorname{Sym}(\{\Delta,-\Delta\})
$$

of Example 6.12, where

$$
\Delta=\prod_{i<j}\left(x_{j}-x_{i}\right) .
$$

Claim 0.2. If (k, ℓ) in S_{n}, then $(k, \ell) \Delta=-\Delta$.
Proof of claim. It does no harm to assume that $k<\ell$. Observe that

$$
\begin{aligned}
& \Delta=\left(\prod_{\{i, j\} \in(k,\},\})=0}\left(x_{j}-x_{i}\right)\right)\left(\prod_{i<k}\left(x_{k}-x_{i}\right)\left(x_{\ell}-x_{i}\right)\right)\left(\prod_{k<i<\ell}\left(x_{i}-x_{k}\right)\left(x_{\ell}-x_{i}\right)\right)\left(\prod_{\ell<i}\left(x_{i}-x_{\ell}\right)\left(x_{i}-x_{k}\right)\right)\left(x_{\ell}-x_{k}\right) . \\
& (k, \ell)(\Delta)=\left(\prod_{\langle i, j\rangle\langle<k, \ell\rangle=0}\left(x_{j}-x_{i}\right)\right)\left(\prod_{i<k}\left(x_{\ell}-x_{i}\right)\left(x_{k}-x_{i}\right)\right)\left(\prod_{k<i<\ell}\left(x_{i}-x_{\ell}\right)\left(x_{k}-x_{i}\right)\right)\left(\prod_{\ell<i}\left(x_{i}-x_{k}\right)\left(x_{i}-x_{\ell}\right)\right)\left(x_{\ell}-x_{k}\right) .
\end{aligned}
$$

The four factors inside () remain unchanged. The factor $\left(x_{\ell}-x_{k}\right)$ has changed to $\left(x_{k}-x_{\ell}\right)=-\left(x_{\ell}-x_{k}\right)$. The claim is established.

The observation follows readily, because

$$
\sigma(\Delta)=(-1)^{a} \Delta \quad \text { and } \quad \sigma(\Delta)=(-1)^{b} \Delta .
$$

The polynomial Δ in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is not identically zero; hence $(-1)^{a}=(-1)^{b}$, as desired.

This is problem 6.18 from the class notes:

The groups $\frac{\mathbb{Z}}{\langle 8\rangle}, \frac{\mathbb{Z}}{\langle 4\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$, and $\frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$ are Abelian. The groups D_{4} and Q_{8} are not Abelian. If two groups are isomorphic then they are both Abelian or neither one is Abelian.

The group $\frac{\mathbb{Z}}{\langle 8\rangle}$ has an element of order 8 ; neither of the groups $\frac{\mathbb{Z}}{\langle 4\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$ nor $\frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$ has an element of order 8 .

The group $\frac{\mathbb{Z}}{\langle 4\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$ has an element of order four, but $\frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle} \oplus \frac{\mathbb{Z}}{\langle 2\rangle}$ does not have an element of order four.

The group D_{4} has many elements of order two. The group Q_{8} has only one element of order two.

This is problem 7.10 from the class notes. How do we know that A_{4} does not have any subgroups of order six? (I first told you this as an example of why the converse of Lagrange's Theorem is not true. This is the smallest such example.)

The group A_{4} has twelve elements; namely
(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24),

$$
(14)(23) .
$$

We argue by contradiction. Suppose that H is a subgroup of A_{4} of order 6, then H has index 2 in A_{4}; consequently, H is a normal subgroup of A_{4}. The subgroup H must contain a three cycle (because all of the elements of A_{4}, except 4 are three cycles.) So, $\sigma=(i, j, k) \in H$ for three distinct integers i, j, k between 1 and 4 and $\sigma^{-1}=(i k j) \in H$. Let ℓ be the fourth integer between 1 and 4 . Observe that

$$
(i \ell j)(i j k)(i j \ell)=(i k \ell) \in H
$$

and

$$
(i k \ell)^{-1}=(i \ell k) \in H .
$$

Similarly,

$$
(i \ell j)(i \ell k)(i j \ell)=(j k \ell) \in H
$$

and

$$
(j k \ell)^{-1}=(j \ell k) \in H .
$$

At this point H contains at least 7 elements. We have reached a contradiction; because H contains exactly six elements.

We conclude that H does not exist.

[^0]: ${ }^{1}$ If f is an element of S_{3}, then one relatively convenient way to record f is in the form

 $$
 \left(\begin{array}{ccc}
 1 & 2 & 3 \\
 f(1) & f(2) & f(3)
 \end{array}\right)
 $$

[^1]: ${ }^{2}$ In the notation of footnote 1 ,

 $$
 \sigma=\left(\begin{array}{llll}
 1 & 2 & 3 & 4 \\
 3 & 2 & 1 & 4
 \end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llll}
 1 & 2 & 3 & 4 \\
 2 & 3 & 4 & 1
 \end{array}\right)
 $$

[^2]: ${ }^{3}$ Recall that if H is a subset of the group $(G, *)$ and H is a group with the same operation $*$ as G, then H is a subgroup of G. To test that a (non-empty) subset H of G is a subgroup it suffices to verify that H is closed and that the inverse of every element of H in G is actually an element of H. Indeed, the operation $*$ associates on all of G, so it associates on the subset H. Also, the closure properties of H ensure that the identity element of G is actually in H.
 ${ }^{4}$ I put quotation marks around the word another because the groups are exactly the same. The one on this page is the matrix representation of the one in the class notes.

[^3]: ${ }^{5}$ Remember that $a h_{0}$ means $\underbrace{h_{0}+\cdots+h_{0}}_{a \text { times }}$ if a is positive; $a h_{0}$ means 0 if a is zero; and $a h_{0}$ means $\underbrace{\left(-h_{0}\right)+\cdots+\left(-h_{0}\right)}_{a \text { times }}$ if a is negative. Keep in mind that the ambient group is the group of integers under addition.

