MATH 546, HOMEWORK, SPRING 2023

- (1) Recall the group $S_n = \text{Sym}(\{1, ..., n\})$, where S_n is the set of invertible functions from $\{1, ..., n\}$ to $\{1, ..., n\}$. The operation in S_n is function composition.
 - (a) Take n = 3. Let σ and τ be the following elements of S_3 :

$$\sigma(1) = 2$$
, $\sigma(2) = 1$, $\sigma(3) = 3$, and
 $\tau(1) = 2$, $\tau(2) = 3$, $\tau(3) = 1$.

- (i) How many distinct elements¹ of S_3 can be written in the form $\sigma^i \circ \tau^j$?
- (ii) Can $\tau \circ \sigma$ be written in the form $\sigma^i \circ \tau^j$?
- (iii) Record the multiplication table for the smallest subgroup of S_3 which contains τ and σ . Put your entries in the form $\sigma^i \circ \tau^j$ whenever this makes sense.
- (b) Take n = 4. Let σ and τ be the following elements² of S_4 :

$$\sigma(1) = 3$$
, $\sigma(2) = 2$, $\sigma(3) = 1$, $\sigma(4) = 4$, and
 $\tau(1) = 2$, $\tau(2) = 3$, $\tau(3) = 4$, $\tau(4) = 1$.

- (i) How many distinct elements of S_4 can be written in the form $\sigma^i \circ \tau^j$?
- (ii) Can $\tau \circ \sigma$ be written in the form $\sigma^i \circ \tau^j$?
- (iii) Record the multiplication table for the smallest subgroup of S_4 which contains τ and σ . Put your entries in the form $\sigma^i \circ \tau^j$ whenever this makes sense.
- (c) Take n = 4. Let σ and τ be the following elements of S_4 :

$$\sigma(1) = 2$$
, $\sigma(2) = 1$, $\sigma(3) = 3$, $\sigma(4) = 4$, and

¹If f is an element of S_3 , then one relatively convenient way to record f is in the form

$$\begin{pmatrix} 1 & 2 & 3\\ f(1) & f(2) & f(3) \end{pmatrix}.$$

If one uses this notation, then

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

²In the notation of footnote 1,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$.

 $\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=4, \quad \tau(4)=1.$

- (i) How many distinct elements of S_4 can be written in the form $\sigma^i \circ \tau^j$?
- (ii) Can $\tau \circ \sigma$ be written in the form $\sigma^i \circ \tau^j$?
- (iii) Record the multiplication table for the smallest subgroup of S_4 which contains τ and σ . (This part of the problem is unpleasant. You can skip it if you want. Actually, this problem is the very last thing in the class notes. See part 5 of the section "Loose Ends", which is section 7.C.)
- (2) Consider the following sets *S* with binary operation *. Which pairs (*S*, *) form a group? If (*S*, *) is not a group, which axioms fail?
 - (a) Let *S* be the set of integers \mathbb{Z} and let a * b = ab.
 - (b) Let *S* be the set of integers \mathbb{Z} and let $a * b = \max\{a, b\}$.
 - (c) Let *S* be the set of integers \mathbb{Z} and let a * b = a b.
 - (d) Let *S* be the set of integers \mathbb{Z} and a * b = |ab|.
 - (e) Let *S* be the set of positive real numbers \mathbb{R}^+ and a * b = ab.
 - (f) Let *S* be the set of non-zero rational numbers $\mathbb{Q} \setminus \{0\}$ and a * b = ab.
- (3) Prove that multiplication of 2×2 matrices satisfies the associative law.
- (4) Is the group GL_n(ℝ) an Abelian group? Give a proof or counter example.
 Recall that GL_n(ℝ) is the group of invertible n × n matrices under multiplication.
- (5) Write a multiplication table for the following set of matrices over \mathbb{Q} :

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \text{and} \quad C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- (6) Let $G = \{x \in \mathbb{R} \mid 0 < x \text{ and } x \neq 1\}$. Define $a * b = a^{\ln b}$, for a and b in G. Prove that (G, *) is an Abelian group.
- (7) Let $S = \mathbb{R} \setminus \{-1\}$. Define * by a * b = a + b + ab, for a and b in S. Prove that (S, *) is a group.
- (8) Prove that a non-Abelian group must have at least five distinct elements.
- (9) Let *G* be a group and let *a*, *b* be elements of *G*. Suppose $(ab)^2 = a^2b^2$. Prove that *a* and *b* commute.
- (10) Is the group of complex numbers $\{1, -1, i, -i\}$, under multiplication, a Klein 4-group?
- (11) Let ρ be rotation counter clockwise by 120° fixing the origin. Let σ be reflection of the *xy* plane across the *x* axis. Let D_3 be the smallest subgroup of the group of rigid motions which contains ρ and σ .
 - (a) List the elements of D_3 .
 - (b) Find the multiplication table for D_3 .
 - (c) Describe the action of each element of D_3 .

- (d) Show that if $\tau \in D_3$, then $\tau(T) = T$, where *T* is the triangle with vertices $(1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), \text{ and } (-\frac{1}{2}, -\frac{\sqrt{3}}{2}).$
- (12) Suppose *H* and \overline{K} are subgroups of the group *G*. Is the intersection $H \cap K$ a always subgroup of *G*? If so, prove the statement. If not, give an example.
- (13) Suppose *H* and *K* are subgroups of the group *G*. Is the union $H \cup K$ always a subgroup of *G*? If so, prove the statement. If not, give an example.
- (14) Let *G* be the group of rational numbers, under addition, and let *H* and *K* be subgroups of *G*. Prove that if $H \neq \{0\}$ and $K \neq \{0\}$, then $H \cap K \neq \{0\}$.
- (15) Let G be a group, and let $a \in G$. The set $C(a) = \{x \in G \mid xa = ax\}$ of all elements of G that commute with a is called the *centralizer* of a.
 - (a) Prove that C(a) is a subgroup of G.
 - (b) Prove that $\langle a \rangle \subseteq C(a)$.
 - (c) Find the centralizer of ρ in D_4 .
 - (d) Find the centralizer of ρ^2 in D_4 .
 - (e) Find the centralizer in $GL_2(\mathbb{R})$ of the matrix

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- (16) Find 6 subgroups of D_4 in addition to D_4 and $\{id\}$.
- (17) Let U_8 be the group of complex numbers which satisfy $x^8 = 1$. Find two subgroups of U_8 in addition to {id} and U_8 .
- (18) Let G be the group U_9 , which consists of all complex numbers z such that $z^9 = 1$.
 - (a) What is the order of each element of G?
 - (b) Which elements of *G* are generators of all of *G*. (Recall that the element *g* in the group *G* generates *G*, if $\langle g \rangle = G$.)
 - (c) Which elements g of G can be written in the form h^2 for some $h \in G$?
 - (d) Which elements g of G can be written in the form h^3 for some $h \in G$?
- (19) Let H be a subgroup of the integers under addition. Prove that H is a cyclic group.
- (20) Find three subgroups of D_4 of order 4. (A subgroup of order 4 is a subgroup with 4 elements.)
- (21) Let g be an element of the group G and let

$$(0.0.1) S = \{ n \in \mathbb{Z} \mid g^n = \mathrm{id} \}.$$

(In other words, *S* is the set of integers *n* such that g^n is equal to the identity of *G*.) Prove that *S* is a subgroup of $(\mathbb{Z}, +)$.

- (22) Consider $g = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ in the group $GL_2(\mathbb{C})$. What is the set *S* (as in (0.0.1)) for *g*?
- (23) Consider $g = \cos \frac{2\pi}{10} + i \sin \frac{2\pi}{10}$ in the unit circle group U. What is the set S (as in (0.0.1)) for g?

- (24) Let (G, *) be a group and let $H = \{g \in G \mid g * g * g = id\}$. Calculate H for $G = D_4, G = D_3$, and $G = U_6$. (Recall that U_6 is the set of complex numbers which are sixth roots of 1.)
- (25) Let G be a group. Suppose that g^2 is equal to the identity element of G for all g in G. Prove that G is an Abelian group.
- (26) Let G be a finite group with an even number of elements. Prove that there must exist an element g of G with g not the identity element, but g^2 equal to the identity element.
- (27) Find an example of a group G and elements a and b in G such that a and b each have finite order, but ab does not. (The element a of the group G has *finite order* if there exists a positive integer n with aⁿ equal to the identity element. If a does not have finite order, then a has *infinite order*.)
- (28) Let $G = D_4$ and let *H* be the subgroup of *G* which is generated by σ . List the left cosets of *H* in *G*.
- (29) Let $G = U_9$ and let *H* be the subgroup of *G* which is generated by u^3 , where $u = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$. List the left cosets of *H* in *G*.
- (30) Let G be the group $(\mathbb{R}^2, +)$, which consists of all column vectors with two real entries, under the operation of addition, and let H be the subgroup of G which consists of all elements of the form $\begin{bmatrix} a \\ a \end{bmatrix}$, for some real number a. Notice that each element of G corresponds in a natural way to a point in the *xy*-plane. Describe the left cosets of H in G.
- (31) Let *G* be a group. The set $Z(G) = \{x \in G \mid xg = gx \text{ for all } g \in G\}$ of all elements that commute with every other element of *G* is called the *center* of *G*.
 - (a) Prove that Z(G) is a subgroup of G.
 - (b) Show that $Z(G) = \bigcap_{a \in G} C(a)$.
 - (c) Find the center of D_3 .
 - (d) Find the center of D_4 .
 - (e) Find the center of $GL_2(\mathbb{R})$.
- (32) Let G be a cyclic group. Let a and b be elements of G such that $a \neq g^2$ for any $g \in G$ and $b \neq g^2$ for any $g \in G$. Prove that ab is equal to g^2 for some $g \in G$. What happens if the hypothesis that G is a cyclic group is removed? Is the statement still true? If so, prove it. If not, find a counterexample. Recall that the group G is *cyclic* if there is an element h in G such that every element of G has the form h^n for some integer n.
- (33) Let *a* and *b* be elements of a group *G*. Suppose that *a* and *b* both have finite order that the orders of *a* and *b* are relatively prime. Suppose further that ab = ba. Prove that the order of *ab* is equal to the order of *a* times the order of *b*. Recall that the *order* of a group element *a* is the least positive integer *n* with a^n equal to the identity element.

- (34) True or False. If true, prove it. If false, give a counterexample. Let G be a group and let H be the subset $H = \{g \in G \mid g^2 = id\}$. Then H is a subgroup of G.
- (35) (a) Compute the left and right cosets of $H = \langle \sigma \rangle$ in $G = D_3$.
 - (b) Is ghg^{-1} in H for all $g \in G$ and h in H, where H and G are as given in (a)?
 - (c) Compute the left and right cosets of $H = \langle \rho \rangle$ in $G = D_3$.
 - (d) Is ghg^{-1} in H for all $g \in G$ and h in H, where H and G are as given in (c)?
- (36) (a) Suppose that *H* is a subgroup of the group *G* with the property that ghg^{-1} in *H* for all $g \in G$ and *h* in *H*. Let *a*, *b*, and *c* be elements of *G* with aH = bH, prove that acH = bcH.
 - (b) Suppose that *H* is a subgroup of the group *G* and that *a*, *b*, and *c* be elements of *G* with aH = bH. Must acH = bcH? Prove or give a counterexample.
- (37) Let G be $(\mathbb{C} \setminus \{0\}, \times)$. Describe the left cosets of the subgroup H in G where
 - (a) $H = U_4$
 - (b) $H = \{ ru \mid r \text{ is a positive real number and } u \in U_4 \}.$
- (38) Suppose that *H* is a subgroup of the group *G* and ghg^{-1} is in *H* for all $g \in G$ and $h \in H$.
 - (a) Let h_1 be an arbitrary element of H and g be an arbitrary element of G. Prove that there exists an element h of H with $h_1 = ghg^{-1}$. (It is possible to give a proof which works for infinite groups as well as finite groups.)
 - (b) Let a, b, c, and d be elements of G with aH = bH and cH = dH. Prove that acH = bdH.
 - (c) Let *S* be the set of cosets $S = \{aH \mid a \in G\}$ of *H* in *G*. Problem 38b shows that the operation on *S* given by (aH) * (bH) = abH is a well-defined function. Prove that *S* is a group. (If you are looking for this somewhere, *S* is usually written as $\frac{G}{H}$ and *S* is called the "quotient group of *G* mod *H*", or the "factor group of *G* mod *H*". BY THE WAY: *S* is not a subset of anything; we have to verify all of the axioms for group. Fortunately, this is very easy.)
- (39) (a) If G is an Abelian group and H is a subgroup of G, then prove that ghg^{-1} is in H for all $g \in G$ and $h \in H$.
 - (b) If *G* is a finite group with 2n elements and *H* is a subgroup of *G* with *n* elements, then prove that ghg^{-1} is in *H* for all $g \in G$ and $h \in H$.
 - (c) If G is a group and H is a subgroup of the center of G, then prove that ghg^{-1} is in H for all $g \in G$ and $h \in H$. (The word center is defined in Problem 31.)

For future reference, a subgroup H of a group G is called a *normal* subgroup if ghg^{-1} is in H for all $g \in G$ and $h \in H$.

- (40) Work out some examples of $\frac{G}{H}$ as described in problem 38c.
 - (a) Let $G = D_4$ and $H = \langle \rho \rangle$. Problem 39c tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
 - (b) Let $G = D_4$ and $H = \langle \rho^2 \rangle$. Problem 39b tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
 - (c) Let $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$. Problem 39a tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the addition table? Do you believe that this addition makes sense? (Notice that the elements of this $\frac{G}{H}$ look like a + H because the operation in *G* is called +. Furthermore, the operation in $\frac{G}{H}$ is also called +; that is, (a+H) + (b+H) = a+b+H.)
- (41) Prove that if N is a normal subgroup of the group G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H. The word normal is defined in problem 39.
- (42) Let G be a finite group, and let n be a divisor of |G|. Prove that if H is the only subgroup of G of order n, then H must be normal in G. (The symbol |G| means the number of elements in the group G. It is often read as the *order* of G.)
- (43) Let *H* and *K* be normal subgroups of of the group *G* such that $H \cap K = \langle id \rangle$ Prove that hk = kh for all $h \in H$ and $k \in K$.
- (44) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (0,1) \rangle}$ is an infinite cyclic group. Recall that the direct product of \mathbb{Z} with \mathbb{Z} is the group of ordered pairs (a,b), where *a* and *b* are integers. The operation is coordinate wise addition: (a,b) + (c,d) = (a+c,b+d), for integers *a*, *b*, *c*, and *d*. (For a more sophisticated solution to this problem than you are able to give now, see problem 67.)
- (45) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (1,1) \rangle}$ is an infinite cyclic group. (For a more sophisticated solution to this problem than you are able to give now, see problem 68.)
- (46) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (2,2) \rangle}$ is not a cyclic group.
- (47) Compute the group

$$\frac{\frac{Z}{\langle 6 \rangle} \times \frac{Z}{\langle 4 \rangle}}{\langle (\bar{2}, \bar{2}) \rangle}$$

(For a more sophisticated solution to this problem than you are able to give now, see problem 69.)

(48) Compute the group

$$\frac{\frac{Z}{\langle 6 \rangle} \times \frac{\mathbb{Z}}{\langle 4 \rangle}}{\langle (\bar{3}, \bar{2}) \rangle}.$$

- (49) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 8 \rangle}$.
- (50) Give a subgroup diagram of $\frac{\mathbb{Z}}{(60)}$.
- (51) Find the cyclic subgroup of $(\mathbb{C} \setminus \{0\}, \times)$ generated by $\frac{\sqrt{2+i\sqrt{2}}}{2}$.
- (52) Find the order of the cyclic subgroup of $(\mathbb{C} \setminus \{0\}, \times)$ generated by *i*.
- (53) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 4 \rangle} \times \frac{\mathbb{Z}}{\langle 2 \rangle}$.
- (54) Define $\varphi : (\mathbb{C} \setminus \{0\}, \times) \to (\mathbb{R} \setminus \{0\}, \times)$ by $\varphi(a+bi) = a^2 + b^2$. Prove that φ is a homomorphism.
- (55) Which of the following are homomorphisms?
 - (a) $\varphi : (\mathbb{R} \setminus \{0\}, \times) \to \operatorname{GL}_2(\mathbb{R})$ defined by $\varphi(a) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$, (b) $\varphi : (\mathbb{R}, +) \to \operatorname{GL}_2(\mathbb{R})$ defined by $\varphi(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$,
 - (c) $\varphi : \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \to (\mathbb{R}, +)$ defined by $\varphi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a$, Recall that Mat. (\mathbb{R}) is the Abelian group of $2 \times 2\pi$

Recall that $Mat_{2\times 2}(\mathbb{R})$ is the Abelian group of 2×2 matrices with real number entries. The operation in $Mat_{2\times 2}(\mathbb{R})$ is matrix addition.

(d)
$$\varphi: \operatorname{GL}_2(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times)$$
 defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ab$,
(e) $\varphi: \operatorname{GL}_2(\mathbb{R}) \to (\mathbb{R}, +)$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$, and
(f) $\varphi: \operatorname{GL}_2(\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times)$ defined by $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$.

- (56) Let $\varphi: G_1 \to G_2$ and $\theta: G_2 \to G_3$ be group homomorphisms. Prove that $\theta \circ \varphi: G_1 \to G_3$ is a group homomorphism. Prove that $\ker(\varphi) \subseteq \ker(\theta \circ \varphi)$.
- (57) Prove that the intersection of two normal subgroups of a group G is a normal subgroup of G.
- (58) Let φ : $G \rightarrow G'$ be a group homomorphism.
 - (a) Let id be the identity element of *G* and id' be the identity element of *G*'. Prove that $\varphi(id) = id'$.
 - (b) Let g be an element of G. Prove that φ of the inverse of g is equal to the inverse of φ(g).
 - (c) The image of φ is the subset im $\varphi = \{\varphi(g) \mid g \in G\}$ of G'. Prove that im φ is a subgroup of G'.
 - (d) The kernel of φ is the subset ker φ = {g ∈ G | φ(g) = id'}, where id' is the identity element of G'. Prove that the kernel of φ is a subgroup of G.
 - (e) Prove that ker φ is a normal subgroup of *G*.

- (f) Consider $\bar{\varphi} : \frac{G}{\ker \varphi} \to \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \ker \varphi) = \varphi(g)$. Prove that $\bar{\varphi}$ is a **FUNCTION**. That is, if $g_1 \ker \varphi$ and $g_2 \ker \varphi$ are equal cosets, then prove that $\bar{\varphi}(g_1 \ker \varphi) = \bar{\varphi}(g_2 \ker \varphi)$.
- (g) Prove that $\bar{\phi}$ is a group homomorphism.
- (h) Prove that $\bar{\phi}$ is onto.
- (i) Prove that $\bar{\phi}$ is one-to-one.

In problem 58, you have proven the following very important Theorem.

The First Isomorphism Theorem *If* φ : $G \to G'$ *is a group homomorphism, then* $\bar{\varphi} : \frac{G}{\ker \varphi} \to \operatorname{im} \varphi$, *which is given by* $\bar{\varphi}(g \ker \varphi) = \varphi(g)$, *is a group isomorphism.*

- (59) Let *G* be a cyclic group with generator *g*. Consider the function $\varphi : \mathbb{Z} \to G$ which is given by $\varphi(m) = g^m$ for all integers *m*.
 - (a) Prove that ϕ is a group homomorphism.
 - (b) Prove that φ is onto.
 - (c) If G is infinite, then prove that φ is an isomorphism.
 - (d) If *G* has finite order *n*, then prove that *G* is isomorphic to $\frac{\mathbb{Z}}{n\mathbb{Z}}$. (I strongly encourage you to use the First Isomorphism Theorem.)
- (60) Let *S* and *T* be sets and let $\varphi : S \to T$ be a function. Suppose that φ is one-to-one and onto.
 - (a) Prove that there exists a FUNCTION $\theta: T \to S$ with $\varphi \circ \theta$ equal to the identity function on *T* and $\theta \circ \varphi$ equal to the identity function on *S*. (The function θ is usually called the inverse of φ .)
 - (b) Prove that the function θ of part (a) is one-to-one and onto.
 - (c) If *S* and *T* happen to be groups and φ happens to be a group homomorphism, then prove that θ is also a group homomorphism.
- (61) Let $\varphi: G \to G'$ and $\varphi': G' \to G''$ be group homomorphisms. Prove that $\varphi' \circ \varphi: G \to G''$ is a group homomorphism.
- (62) Prove that the relationship "is isomorphic to" is an equivalence relation on the class of all groups. Recall that a relation \sim on a class *C* is an *equivalence relation* if
 - (a) The relation \sim is *reflexive*. If $c \in C$, then $c \sim c$.
 - (b) The relation ~ is *symmetric*. If $c \sim c'$ for some c and c' in C, then $c' \sim c$.
 - (c) The relation \sim is *transitive*. If $c \sim c'$ and $c' \sim c''$ for some c, c', c'' in C, then $c \sim c''$.

In problems 59 and 62, you have proven the following Theorem.

Theorem

- (a) If G and G' are infinite cyclic groups, then G and G' are isomorphic.
- (b) If G and G' are cyclic groups of finite order n, then G and G' are isomorphic.

- (63) Let $\varphi : G \to G'$ be a group homomorphism. Prove that φ is one-to-one if and only if ker $\varphi = \{id\}$.
- (64) Let m and n be non-zero integers and let H be the subset

$$H = \{am + bn \mid a, b \in \mathbb{Z}\}$$

of \mathbb{Z} .

- (a) Prove that *H* is a subgroup of \mathbb{Z} .
- (b) We have shown that every subgroup of \mathbb{Z} is cyclic. So *H* is cyclic. Let h_0 be a generator of *H*. (We can insist that h_0 is positive.) Prove that h_0 is a common divisor of *m* and *n*.
- (c) Suppose that ℓ is an integer which happens to divide *m* and *n*. Prove that ℓ must also divide h_0 .
- (d) Notice that you have proven that h_0 is the greatest common divisor of *m* and *n*.

In problem 64, you have proven the following result.

Lemma from Number Theory. *If d is the greatest common divisor of the non-zero integers m and n, then there exist integers r and s so that*

$$d = rn + sm$$
.

- (65) Suppose *m* and *n* are relatively prime non-zero integers. Prove that the groups $\frac{\mathbb{Z}}{mn\mathbb{Z}}$ and $\frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{n\mathbb{Z}}$ are isomorphic. (An algebraist calls this result the Chinese Remainder Theorem.)
- (66) Let *G* be a cyclic group of order *n*; let *g* be a generator of *G*; and let *H* be a subgroup of *G* of order *m*. Lagrange's Theorem tells us that m|n. Let *d* equal the integer $\frac{n}{m}$. I want you to prove that *H* is the subgroup of *G* which is generated by g^d . I propose a couple of steps. First of all, we know that *H* is cyclic, so $H = \langle g^r \rangle$ for some integer *r*.
 - (a) Prove that d|r.

(b) Now you know that $H = \langle g^r \rangle \subseteq \langle g^d \rangle$. Finish the proof that $H = \langle g^d \rangle$.

- (67) Define a group homomorphism from Z × Z onto Z whose kernel is the subgroup of Z × Z generated by (0,1). Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 44 than you were able to give when you first did problem 44.)
- (68) Define a group homomorphism from Z × Z onto Z whose kernel is the subgroup of Z × Z generated by (1,1). Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 45 than you were able to give when you first did problem 45.)
- (69) Consider $\varphi: \frac{\mathbb{Z}}{6\mathbb{Z}} \times \frac{\mathbb{Z}}{4\mathbb{Z}} \to \frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$, given by

 $\varphi(a+6\mathbb{Z},b+4\mathbb{Z})=(a+3\mathbb{Z},b+2\mathbb{Z}).$

- (a) Prove that φ is a function.
- (b) Prove that φ is a group homomorphism.
- (c) What are the image and kernel of φ ?
- (d) What does the First Isomorphism Theorem tell you?

Problem 69 gives a more sophisticated solution to problem 47 than you were able to give when you first did problem 47.

- (70) Find a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto $\mathbb{Z} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$, whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ which is generated by (2,2). Apply the First Isomorphism Theorem.
- (71) Exhibit an isomorphism φ : U → G, where U is the unit circle group and G is a subgroup of GL₂(ℝ). Tell me what G is. Tell me what φ is. Prove that φ is an isomorphism.
- (72) Exhibit an isomorphism $\phi : (\mathbb{R} \setminus \{0\}, \times) \to (\mathbb{R} \setminus \{-2\}, *)$, where a * b = ab + 2a + 2b + 2. Tell me what ϕ is and prove that ϕ is an isomorphism.
- (73) Let H = {id, a, b, c} be a Klein 4-group with a² = b² = c² = id, ab = ba = c, ac = ca = b, and bc = cb = a. The group H has exactly 4 elements. Consider the function φ : Z × Z → H which is given by φ(m,n) = a^mbⁿ. Prove that φ is a group homomorphism. Prove that φ is onto. What is the kernel of φ? What does the First Isomorphism Theorem tell you?
- (74) Is the additive group \mathbb{C} isomorphic to the multiplicative group $(\mathbb{C} \setminus \{0\}, \times)$?
- (75) Prove that every group with three elements is isomorphic to $\frac{\mathbb{Z}}{\sqrt{3}}$.
- (76) Find two Abelian groups of order 8 that are not isomorphic.
- (77) Let C_2 be the subgroup $\{1, -1\}$ of $(\mathbb{R} \setminus \{0\}, \times)$. Prove that $(\mathbb{R} \setminus \{0\}, \times)$ is isomorphic to $(\mathbb{R}^{\text{pos}}, \times) \times C_2$, where \mathbb{R}^{pos} is the set of positive real numbers.
- (78) Recall the group (S,*) of problem (7). Prove that (S,*) is isomorphic to $(\mathbb{R} \setminus \{0\}, \times)$.
- (79) Let *G* be a group, and let *a* be a fixed element of *G*. Define a function $\varphi_a : G \to G$ by $\varphi_a(x) = axa^{-1}$, for all $x \in G$. Prove that φ_a is an isomorphism.
- (80) Let *G* be a group. Define $\varphi : G \to G$ by $\varphi(x) = x^{-1}$, for all $x \in G$. (a) Prove that φ is one-to-one and onto.

(b) Prove that φ is an isomorphism if and only if *G* is Abelian.

- (81) Define $\varphi : (\mathbb{C} \setminus \{0\}, \times) \to (\mathbb{C} \setminus \{0\}, \times)$ by $\varphi(a+bi) = a-bi$. Prove that φ is an isomorphism.
- (82) Prove that $(\mathbb{C} \setminus \{0\}, \times)$ is isomorphic to the subgroup of $GL_2(\mathbb{R})$ which consists of all matrices of the form

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

with $a^2 + b^2 \neq 0$.

- (83) Recall the group G of problem (6). Prove that G is isomorphic to the group $(\mathbb{R} \setminus \{0\}, \times)$.
- (84) Consider the following permutations in S_7 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3 \end{pmatrix}.$$

- (a) Compute $\sigma \circ \tau$.
- (b) Write $\sigma \circ \tau$ as a product of disjoint cycles.
- (c) Write σ and τ each as a product of transpositions.
- (85) List all of the elements of S_4 . Use cycle notation.
- (86) Find the number of cycles of each possible length in S_5 . Find all possible orders of elements in S_5 . (Try to do this problem without listing all of the elements of S_5 .)
- (87) Let S be a set and let a be an element of S. Prove that

$$\{\sigma \in \operatorname{Sym}(S) \mid \sigma(a) = a\}$$

is a subgroup of Sym(S). Recall that Sym(S) is the group of permutations of *S*.