MATH 546, HOMEWORK, SPRING 2023

(1) Recall the group $S_{n}=\operatorname{Sym}(\{1, \ldots, n\})$, where S_{n} is the set of invertible functions from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. The operation in S_{n} is function composition.
(a) Take $n=3$. Let σ and τ be the following elements of S_{3} :

$$
\begin{gathered}
\sigma(1)=2, \quad \sigma(2)=1, \quad \sigma(3)=3, \quad \text { and } \\
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=1 .
\end{gathered}
$$

(i) How many distinct elements ${ }^{1}$ of S_{3} can be written in the form $\sigma^{i} \circ \tau^{j}$?
(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?
(iii) Record the multiplication table for the smallest subgroup of S_{3} which contains τ and σ. Put your entries in the form $\sigma^{i} \circ \tau^{j}$ whenever this makes sense.
(b) Take $n=4$. Let σ and τ be the following elements ${ }^{2}$ of S_{4} :

$$
\begin{gathered}
\sigma(1)=3, \quad \sigma(2)=2, \quad \sigma(3)=1, \quad \sigma(4)=4, \quad \text { and } \\
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=4, \quad \tau(4)=1 .
\end{gathered}
$$

(i) How many distinct elements of S_{4} can be written in the form $\sigma^{i} \circ \tau^{j}$?
(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?
(iii) Record the multiplication table for the smallest subgroup of S_{4} which contains τ and σ. Put your entries in the form $\sigma^{i} \circ \tau^{j}$ whenever this makes sense.
(c) Take $n=4$. Let σ and τ be the following elements of S_{4} :

$$
\sigma(1)=2, \quad \sigma(2)=1, \quad \sigma(3)=3, \quad \sigma(4)=4, \quad \text { and }
$$

[^0]If one uses this notation, then

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

${ }^{2}$ In the notation of footnote 1,

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right)
$$

$$
\tau(1)=2, \quad \tau(2)=3, \quad \tau(3)=4, \quad \tau(4)=1 .
$$

(i) How many distinct elements of S_{4} can be written in the form $\sigma^{i} \circ \tau^{j}$?
(ii) Can $\tau \circ \sigma$ be written in the form $\sigma^{i} \circ \tau^{j}$?
(iii) Record the multiplication table for the smallest subgroup of S_{4} which contains τ and σ. (This part of the problem is unpleasant. You can skip it if you want. Actually, this problem is the very last thing in the class notes. See part 5 of the section "Loose Ends", which is section 7.C.)
(2) Consider the following sets S with binary operation $*$. Which pairs $(S, *)$ form a group? If $(S, *)$ is not a group, which axioms fail?
(a) Let S be the set of integers \mathbb{Z} and let $a * b=a b$.
(b) Let S be the set of integers \mathbb{Z} and let $a * b=\max \{a, b\}$.
(c) Let S be the set of integers \mathbb{Z} and let $a * b=a-b$.
(d) Let S be the set of integers \mathbb{Z} and $a * b=|a b|$.
(e) Let S be the set of positive real numbers \mathbb{R}^{+}and $a * b=a b$.
(f) Let S be the set of non-zero rational numbers $\mathbb{Q} \backslash\{0\}$ and $a * b=a b$.
(3) Prove that multiplication of 2×2 matrices satisfies the associative law.
(4) Is the group $\mathrm{GL}_{n}(\mathbb{R})$ an Abelian group? Give a proof or counter example. Recall that $\mathrm{GL}_{n}(\mathbb{R})$ is the group of invertible $n \times n$ matrices under multiplication.
(5) Write a multiplication table for the following set of matrices over \mathbb{Q} :

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] .
$$

(6) Let $G=\{x \in \mathbb{R} \mid 0<x$ and $x \neq 1\}$. Define $a * b=a^{\ln b}$, for a and b in G. Prove that $(G, *)$ is an Abelian group.
(7) Let $S=\mathbb{R} \backslash\{-1\}$. Define $*$ by $a * b=a+b+a b$, for a and b in S. Prove that $(S, *)$ is a group.
(8) Prove that a non-Abelian group must have at least five distinct elements.
(9) Let G be a group and let a, b be elements of G. Suppose $(a b)^{2}=a^{2} b^{2}$. Prove that a and b commute.
(10) Is the group of complex numbers $\{1,-1, i,-i\}$, under multiplication, a Klein 4-group?
(11) Let ρ be rotation counter clockwise by 120° fixing the origin. Let σ be reflection of the $x y$ plane across the x axis. Let D_{3} be the smallest subgroup of the group of rigid motions which contains ρ and σ.
(a) List the elements of D_{3}.
(b) Find the multiplication table for D_{3}.
(c) Describe the action of each element of D_{3}.
(d) Show that if $\tau \in D_{3}$, then $\tau(T)=T$, where T is the triangle with vertices $(1,0),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.
(12) Suppose H and K are subgroups of the group G. Is the intersection $H \cap K$ a always subgroup of G ? If so, prove the statement. If not, give an example.
(13) Suppose H and K are subgroups of the group G. Is the union $H \cup K$ always a subgroup of G ? If so, prove the statement. If not, give an example.
(14) Let G be the group of rational numbers, under addition, and let H and K be subgroups of G. Prove that if $H \neq\{0\}$ and $K \neq\{0\}$, then $H \cap K \neq\{0\}$.
(15) Let G be a group, and let $a \in G$. The set $C(a)=\{x \in G \mid x a=a x\}$ of all elements of G that commute with a is called the centralizer of a.
(a) Prove that $C(a)$ is a subgroup of G.
(b) Prove that $\langle a\rangle \subseteq C(a)$.
(c) Find the centralizer of ρ in D_{4}.
(d) Find the centralizer of ρ^{2} in D_{4}.
(e) Find the centralizer in $\mathrm{GL}_{2}(\mathbb{R})$ of the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

(16) Find 6 subgroups of D_{4} in addition to D_{4} and $\{\mathrm{id}\}$.
(17) Let U_{8} be the group of complex numbers which satisfy $x^{8}=1$. Find two subgroups of U_{8} in addition to $\{\mathrm{id}\}$ and U_{8}.
(18) Let G be the group U_{9}, which consists of all complex numbers z such that $z^{9}=1$.
(a) What is the order of each element of G ?
(b) Which elements of G are generators of all of G. (Recall that the element g in the group G generates G, if $\langle g\rangle=G$.)
(c) Which elements g of G can be written in the form h^{2} for some $h \in G$?
(d) Which elements g of G can be written in the form h^{3} for some $h \in G$?
(19) Let H be a subgroup of the integers under addition. Prove that H is a cyclic group.
(20) Find three subgroups of D_{4} of order 4. (A subgroup of order 4 is a subgroup with 4 elements.)
(21) Let g be an element of the group G and let

$$
\begin{equation*}
S=\left\{n \in \mathbb{Z} \mid g^{n}=\mathrm{id}\right\} . \tag{0.0.1}
\end{equation*}
$$

(In other words, S is the set of integers n such that g^{n} is equal to the identity of G.) Prove that S is a subgroup of $(\mathbb{Z},+)$.
(22) Consider $g=\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$ in the group $\mathrm{GL}_{2}(\mathbb{C})$. What is the set S (as in (0.0.1)) for g ?
(23) Consider $g=\cos \frac{2 \pi}{10}+i \sin \frac{2 \pi}{10}$ in the unit circle group U. What is the set S (as in (0.0.1)) for g ?
(24) Let $(G, *)$ be a group and let $H=\{g \in G \mid g * g * g=\mathrm{id}\}$. Calculate H for $G=D_{4}, G=D_{3}$, and $G=U_{6}$. (Recall that U_{6} is the set of complex numbers which are sixth roots of 1.)
(25) Let G be a group. Suppose that g^{2} is equal to the identity element of G for all g in G. Prove that G is an Abelian group.
(26) Let G be a finite group with an even number of elements. Prove that there must exist an element g of G with g not the identity element, but g^{2} equal to the identity element.
(27) Find an example of a group G and elements a and b in G such that a and b each have finite order, but $a b$ does not. (The element a of the group G has finite order if there exists a positive integer n with a^{n} equal to the identity element. If a does not have finite order, then a has infinite order.)
(28) Let $G=D_{4}$ and let H be the subgroup of G which is generated by σ. List the left cosets of H in G.
(29) Let $G=U_{9}$ and let H be the subgroup of G which is generated by u^{3}, where $u=\cos \frac{2 \pi}{9}+i \sin \frac{2 \pi}{9}$. List the left cosets of H in G.
(30) Let G be the group $\left(\mathbb{R}^{2},+\right)$, which consists of all column vectors with two real entries, under the operation of addition, and let H be the subgroup of G which consists of all elements of the form $\left[\begin{array}{l}a \\ a\end{array}\right]$, for some real number a. Notice that each element of G corresponds in a natural way to a point in the $x y$-plane. Describe the left cosets of H in G.
(31) Let G be a group. The set $Z(G)=\{x \in G \mid x g=g x$ for all $g \in G\}$ of all elements that commute with every other element of G is called the center of G.
(a) Prove that $Z(G)$ is a subgroup of G.
(b) Show that $Z(G)=\bigcap_{a \in G} C(a)$.
(c) Find the center of D_{3}.
(d) Find the center of D_{4}.
(e) Find the center of $\mathrm{GL}_{2}(\mathbb{R})$.
(32) Let G be a cyclic group. Let a and b be elements of G such that $a \neq g^{2}$ for any $g \in G$ and $b \neq g^{2}$ for any $g \in G$. Prove that $a b$ is equal to g^{2} for some $g \in G$. What happens if the hypothesis that G is a cyclic group is removed? Is the statement still true? If so, prove it. If not, find a counterexample. Recall that the group G is cyclic if there is an element h in G such that every element of G has the form h^{n} for some integer n .
(33) Let a and b be elements of a group G. Suppose that a and b both have finite order that the orders of a and b are relatively prime. Suppose further that $a b=b a$. Prove that the order of $a b$ is equal to the order of a times the order of b. Recall that the order of a group element a is the least positive integer n with a^{n} equal to the identity element.
(34) True or False. If true, prove it. If false, give a counterexample. Let G be a group and let H be the subset $H=\left\{g \in G \mid g^{2}=\mathrm{id}\right\}$. Then H is a subgroup of G.
(35) (a) Compute the left and right cosets of $H=\langle\sigma\rangle$ in $G=D_{3}$.
(b) Is $g h g^{-1}$ in H for all $g \in G$ and h in H, where H and G are as given in (a)?
(c) Compute the left and right cosets of $H=\langle\rho\rangle$ in $G=D_{3}$.
(d) Is $g h g^{-1}$ in H for all $g \in G$ and h in H, where H and G are as given in (c)?
(36) (a) Suppose that H is a subgroup of the group G with the property that $g h g^{-1}$ in H for all $g \in G$ and h in H. Let a, b, and c be elements of G with $a H=b H$, prove that $a c H=b c H$.
(b) Suppose that H is a subgroup of the group G and that a, b, and c be elements of G with $a H=b H$. Must $a c H=b c H$? Prove or give a counterexample.
(37) Let G be $(\mathbb{C} \backslash\{0\}, \times$). Describe the left cosets of the subgroup H in G where
(a) $H=U_{4}$
(b) $H=\left\{r u \mid r\right.$ is a positive real number and $\left.u \in U_{4}\right\}$.
(38) Suppose that H is a subgroup of the group G and $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(a) Let h_{1} be an arbitrary element of H and g be an arbitrary element of G. Prove that there exists an element h of H with $h_{1}=g h g^{-1}$. (It is possible to give a proof which works for infinite groups as well as finite groups.)
(b) Let a, b, c, and d be elements of G with $a H=b H$ and $c H=d H$. Prove that $a c H=b d H$.
(c) Let S be the set of cosets $S=\{a H \mid a \in G\}$ of H in G. Problem 38b shows that the operation on S given by $(a H) *(b H)=a b H$ is a welldefined function. Prove that S is a group. (If you are looking for this somewhere, S is usually written as $\frac{G}{H}$ and S is called the "quotient group of $G \bmod H$ ", or the "factor group of $G \bmod H$ ". BY THE WAY: S is not a subset of anything; we have to verify all of the axioms for group. Fortunately, this is very easy.)
(39) (a) If G is an Abelian group and H is a subgroup of G, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(b) If G is a finite group with $2 n$ elements and H is a subgroup of G with n elements, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(c) If G is a group and H is a subgroup of the center of G, then prove that $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$. (The word center is defined in Problem 31.)

For future reference, a subgroup H of a group G is called a normal subgroup if $g h g^{-1}$ is in H for all $g \in G$ and $h \in H$.
(40) Work out some examples of $\frac{G}{H}$ as described in problem 38c.
(a) Let $G=D_{4}$ and $H=\langle\rho\rangle$. Problem 39c tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
(b) Let $G=D_{4}$ and $H=\left\langle\rho^{2}\right\rangle$. Problem 39b tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the multiplication table? Do you believe that this multiplication makes sense?
(c) Let $G=\mathbb{Z}$ and $H=5 \mathbb{Z}$. Problem 39a tells us that it is legal to create $\frac{G}{H}$. What is this group? How many elements does it have? What is the addition table? Do you believe that this addition makes sense? (Notice that the elements of this $\frac{G}{H}$ look like $a+H$ because the operation in G is called + . Furthermore, the operation in $\frac{G}{H}$ is also called + ; that is, $(a+H)+(b+H)=a+b+H$.
(41) Prove that if N is a normal subgroup of the group G, and H is any subgroup of G, then $H \cap N$ is a normal subgroup of H. The word normal is defined in problem 39.
(42) Let G be a finite group, and let n be a divisor of $|G|$. Prove that if H is the only subgroup of G of order n, then H must be normal in G. (The symbol $|G|$ means the number of elements in the group G. It is often read as the order of G.)
(43) Let H and K be normal subgroups of of the group G such that $H \cap K=\langle\mathrm{id}\rangle$ Prove that $h k=k h$ for all $h \in H$ and $k \in K$.
(44) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(0,1)\rangle}$ is an infinite cyclic group. Recall that the direct product of \mathbb{Z} with \mathbb{Z} is the group of ordered pairs (a, b), where a and b are integers. The operation is coordinate wise addition: $(a, b)+(c, d)=(a+c, b+d)$, for integers a, b, c, and d. (For a more sophisticated solution to this problem than you are able to give now, see problem 67.)
(45) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(1,1)\rangle}$ is an infinite cyclic group. (For a more sophisticated solution to this problem than you are able to give now, see problem 68.)
(46) Prove that $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(2,2)\rangle}$ is not a cyclic group.
(47) Compute the group

$$
\frac{\frac{Z}{\langle 6\rangle} \times \frac{\mathbb{Z}}{\langle 4\rangle}}{\langle(\overline{2}, \overline{2})\rangle} .
$$

(For a more sophisticated solution to this problem than you are able to give now, see problem 69.)
(48) Compute the group

$$
\frac{\frac{Z}{\langle 6\rangle} \times \frac{\mathbb{Z}}{\langle 4\rangle}}{\langle(\overline{3}, \overline{2})\rangle} .
$$

(49) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 8\rangle}$.
(50) Give a subgroup diagram of $\frac{\mathbb{Z}}{\langle 60\rangle}$.
(51) Find the cyclic subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ generated by $\frac{\sqrt{2}+i \sqrt{2}}{2}$.
(52) Find the order of the cyclic subgroup of $(\mathbb{C} \backslash\{0\}, \times)$ generated by i.
(53) Find all cyclic subgroups of $\frac{\mathbb{Z}}{\langle 4\rangle} \times \frac{\mathbb{Z}}{\langle 2\rangle}$.
(54) Define $\varphi:(\mathbb{C} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ by $\varphi(a+b i)=a^{2}+b^{2}$. Prove that φ is a homomorphism.
(55) Which of the following are homomorphisms?
(a) $\varphi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]$,
(b) $\varphi:(\mathbb{R},+) \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$,
(c) $\varphi: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a$,

Recall that $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the Abelian group of 2×2 matrices with real number entries. The operation in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is matrix addition.
(d) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a b$,
(e) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a+d$, and
(f) $\varphi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow(\mathbb{R} \backslash\{0\}, \times)$ defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a d-b c$.
(56) Let $\varphi: G_{1} \rightarrow G_{2}$ and $\theta: G_{2} \rightarrow G_{3}$ be group homomorphisms. Prove that $\theta \circ \varphi: G_{1} \rightarrow G_{3}$ is a group homomorphism. Prove that $\operatorname{ker}(\varphi) \subseteq \operatorname{ker}(\theta \circ \varphi)$.
(57) Prove that the intersection of two normal subgroups of a group G is a normal subgroup of G.
(58) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism.
(a) Let id be the identity element of G and id^{\prime} be the identity element of G^{\prime}. Prove that $\varphi(\mathrm{id})=\mathrm{id}^{\prime}$.
(b) Let g be an element of G. Prove that φ of the inverse of g is equal to the inverse of $\varphi(g)$.
(c) The image of φ is the subset $\operatorname{im} \varphi=\{\varphi(g) \mid g \in G\}$ of G^{\prime}. Prove that $\operatorname{im} \varphi$ is a subgroup of G^{\prime}.
(d) The kernel of φ is the subset $\operatorname{ker} \varphi=\left\{g \in G \mid \varphi(g)=\mathrm{id}^{\prime}\right\}$, where id^{\prime} is the identity element of G^{\prime}. Prove that the kernel of φ is a subgroup of G.
(e) Prove that $\operatorname{ker} \varphi$ is a normal subgroup of G.
(f) Consider $\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \operatorname{ker} \varphi)=\varphi(g)$. Prove that $\bar{\varphi}$ is a FUNCTION. That is, if $g_{1} \operatorname{ker} \varphi$ and $g_{2} \operatorname{ker} \varphi$ are equal cosets, then prove that $\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right)=\bar{\varphi}\left(g_{2} \operatorname{ker} \varphi\right)$.
(g) Prove that $\bar{\varphi}$ is a group homomorphism.
(h) Prove that $\bar{\varphi}$ is onto.
(i) Prove that $\bar{\varphi}$ is one-to-one.

In problem 58, you have proven the following very important Theorem.
The First Isomorphism Theorem $\operatorname{If} \varphi: G \rightarrow G^{\prime}$ is a group homomorphism, then $\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \operatorname{ker} \varphi)=\varphi(g)$, is a group isomorphism.
(59) Let G be a cyclic group with generator g. Consider the function $\varphi: \mathbb{Z} \rightarrow G$ which is given by $\varphi(m)=g^{m}$ for all integers m.
(a) Prove that φ is a group homomorphism.
(b) Prove that φ is onto.
(c) If G is infinite, then prove that φ is an isomorphism.
(d) If G has finite order n, then prove that G is isomorphic to $\frac{\mathbb{Z}}{n \mathbb{Z}}$. (I strongly encourage you to use the First Isomorphism Theorem.)
(60) Let S and T be sets and let $\varphi: S \rightarrow T$ be a function. Suppose that φ is one-to-one and onto.
(a) Prove that there exists a FUNCTION $\theta: T \rightarrow S$ with $\varphi \circ \theta$ equal to the identity function on T and $\theta \circ \varphi$ equal to the identity function on S. (The function θ is usually called the inverse of φ.)
(b) Prove that the function θ of part (a) is one-to-one and onto.
(c) If S and T happen to be groups and φ happens to be a group homomorphism, then prove that θ is also a group homomorphism.
(61) Let $\varphi: G \rightarrow G^{\prime}$ and $\varphi^{\prime}: G^{\prime} \rightarrow G^{\prime \prime}$ be group homomorphisms. Prove that $\varphi^{\prime} \circ \varphi: G \rightarrow G^{\prime \prime}$ is a group homomorphism.
(62) Prove that the relationship "is isomorphic to" is an equivalence relation on the class of all groups. Recall that a relation \sim on a class C is an equivalence relation if
(a) The relation \sim is reflexive. If $c \in C$, then $c \sim c$.
(b) The relation \sim is symmetric. If $c \sim c^{\prime}$ for some c and c^{\prime} in C, then $c^{\prime} \sim c$.
(c) The relation \sim is transitive. If $c \sim c^{\prime}$ and $c^{\prime} \sim c^{\prime \prime}$ for some $c, c^{\prime}, c^{\prime \prime}$ in C, then $c \sim c^{\prime \prime}$.

In problems 59 and 62, you have proven the following Theorem.

Theorem

(a) If G and G^{\prime} are infinite cyclic groups, then G and G^{\prime} are isomorphic.
(b) If G and G^{\prime} are cyclic groups of finite order n, then G and G^{\prime} are isomorphic.
(63) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that φ is one-to-one if and only if $\operatorname{ker} \varphi=\{\mathrm{id}\}$.
(64) Let m and n be non-zero integers and let H be the subset

$$
H=\{a m+b n \mid a, b \in \mathbb{Z}\}
$$

of \mathbb{Z}.
(a) Prove that H is a subgroup of \mathbb{Z}.
(b) We have shown that every subgroup of \mathbb{Z} is cyclic. So H is cyclic. Let h_{0} be a generator of H. (We can insist that h_{0} is positive.) Prove that h_{0} is a common divisor of m and n.
(c) Suppose that ℓ is an integer which happens to divide m and n. Prove that ℓ must also divide h_{0}.
(d) Notice that you have proven that h_{0} is the greatest common divisor of m and n.

In problem 64, you have proven the following result.
Lemma from Number Theory. If d is the greatest common divisor of the non-zero integers m and n, then there exist integers r and s so that

$$
d=r n+s m .
$$

(65) Suppose m and n are relatively prime non-zero integers. Prove that the groups $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ and $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ are isomorphic. (An algebraist calls this result the Chinese Remainder Theorem.)
(66) Let G be a cyclic group of order n; let g be a generator of G; and let H be a subgroup of G of order m. Lagrange's Theorem tells us that $m \mid n$. Let d equal the integer $\frac{n}{m}$. I want you to prove that H is the subgroup of G which is generated by g^{d}. I propose a couple of steps. First of all, we know that H is cyclic, so $H=\left\langle g^{r}\right\rangle$ for some integer r.
(a) Prove that $d \mid r$.
(b) Now you know that $H=\left\langle g^{r}\right\rangle \subseteq\left\langle g^{d}\right\rangle$. Finish the proof that $H=\left\langle g^{d}\right\rangle$.
(67) Define a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $(0,1)$. Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 44 than you were able to give when you first did problem 44.)
(68) Define a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $(1,1)$. Apply the First Isomorphism Theorem. (This problem gives a more sophisticated solution to problem 45 than you were able to give when you first did problem 45.)
(69) Consider $\varphi: \frac{\mathbb{Z}}{6 \mathbb{Z}} \times \frac{\mathbb{Z}}{4 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{3 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$, given by

$$
\varphi(a+6 \mathbb{Z}, b+4 \mathbb{Z})=(a+3 \mathbb{Z}, b+2 \mathbb{Z})
$$

(a) Prove that φ is a function.
(b) Prove that φ is a group homomorphism.
(c) What are the image and kernel of φ ?
(d) What does the First Isomorphism Theorem tell you?

Problem 69 gives a more sophisticated solution to problem 47 than you were able to give when you first did problem 47.
(70) Find a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto $\mathbb{Z} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$, whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ which is generated by $(2,2)$. Apply the First Isomorphism Theorem.
(71) Exhibit an isomorphism $\phi: U \rightarrow G$, where U is the unit circle group and G is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. Tell me what G is. Tell me what ϕ is. Prove that ϕ is an isomorphism.
(72) Exhibit an isomorphism $\phi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow(\mathbb{R} \backslash\{-2\}, *)$, where $a * b=a b+2 a+2 b+2$. Tell me what ϕ is and prove that ϕ is an isomorphism.
(73) Let $H=\{\operatorname{id}, a, b, c\}$ be a Klein 4-group with $a^{2}=b^{2}=c^{2}=\mathrm{id}, a b=b a=$ $c, a c=c a=b$, and $b c=c b=a$. The group H has exactly 4 elements. Consider the function $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow H$ which is given by $\varphi(m, n)=a^{m} b^{n}$. Prove that φ is a group homomorphism. Prove that φ is onto. What is the kernel of φ ? What does the First Isomorphism Theorem tell you?
(74) Is the additive group \mathbb{C} isomorphic to the multiplicative group $(\mathbb{C} \backslash\{0\}, \times)$?
(75) Prove that every group with three elements is isomorphic to $\frac{\mathbb{Z}}{\langle 3\rangle}$.
(76) Find two Abelian groups of order 8 that are not isomorphic.
(77) Let C_{2} be the subgroup $\{1,-1\}$ of $(\mathbb{R} \backslash\{0\}, \times)$. Prove that $(\mathbb{R} \backslash\{0\}, \times)$ is isomorphic to $\left(\mathbb{R}^{\text {pos }}, \times\right) \times C_{2}$, where $\mathbb{R}^{\text {pos }}$ is the set of positive real numbers.
(78) Recall the group $(S, *)$ of problem (7). Prove that $(S, *)$ is isomorphic to $(\mathbb{R} \backslash\{0\}, \times)$.
(79) Let G be a group, and let a be a fixed element of G. Define a function $\varphi_{a}: G \rightarrow G$ by $\varphi_{a}(x)=a x a^{-1}$, for all $x \in G$. Prove that φ_{a} is an isomorphism.
(80) Let G be a group. Define $\varphi: G \rightarrow G$ by $\varphi(x)=x^{-1}$, for all $x \in G$.
(a) Prove that φ is one-to-one and onto.
(b) Prove that φ is an isomorphism if and only if G is Abelian.
(81) Define $\varphi:(\mathbb{C} \backslash\{0\}, \times) \rightarrow(\mathbb{C} \backslash\{0\}, \times)$ by $\varphi(a+b i)=a-b i$. Prove that φ is an isomorphism.
(82) Prove that $(\mathbb{C} \backslash\{0\}, \times)$ is isomorphic to the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ which consists of all matrices of the form

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

with $a^{2}+b^{2} \neq 0$.
(83) Recall the group G of problem (6). Prove that G is isomorphic to the group $(\mathbb{R} \backslash\{0\}, \times)$.
(84) Consider the following permutations in S_{7} :
$\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7\end{array}\right) \quad$ and $\quad \tau=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 5 & 7 & 4 & 6 & 3\end{array}\right)$.
(a) Compute $\sigma \circ \tau$.
(b) Write $\sigma \circ \tau$ as a product of disjoint cycles.
(c) Write σ and τ each as a product of transpositions.
(85) List all of the elements of S_{4}. Use cycle notation.
(86) Find the number of cycles of each possible length in S_{5}. Find all possible orders of elements in S_{5}. (Try to do this problem without listing all of the elements of S_{5}.)
(87) Let S be a set and let a be an element of S. Prove that

$$
\{\sigma \in \operatorname{Sym}(S) \mid \sigma(a)=a\}
$$

is a subgroup of $\operatorname{Sym}(S)$. Recall that $\operatorname{Sym}(S)$ is the group of permutations of S.

[^0]: ${ }^{1}$ If f is an element of S_{3}, then one relatively convenient way to record f is in the form

 $$
 \left(\begin{array}{ccc}
 1 & 2 & 3 \\
 f(1) & f(2) & f(3)
 \end{array}\right)
 $$

