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(1) Recall the group Sn = Sym({1, ...,n}), where Sn is the set of invertible func-
tions from {1, . . . ,n} to {1, . . . ,n}. The operation in Sn is function compo-
sition.
(a) Take n = 3. Let σ and τ be the following elements of S3:

σ(1) = 2, σ(2) = 1, σ(3) = 3, and

τ(1) = 2, τ(2) = 3, τ(3) = 1.

(i) How many distinct elements1 of S3 can be written in the form
σi ◦ τ j?

(ii) Can τ◦σ be written in the form σi ◦ τ j?
(iii) Record the multiplication table for the smallest subgroup of S3

which contains τ and σ. Put your entries in the form σi ◦ τ j when-
ever this makes sense.

(b) Take n = 4. Let σ and τ be the following elements2 of S4:

σ(1) = 3, σ(2) = 2, σ(3) = 1, σ(4) = 4, and

τ(1) = 2, τ(2) = 3, τ(3) = 4, τ(4) = 1.

(i) How many distinct elements of S4 can be written in the form
σi ◦ τ j?

(ii) Can τ◦σ be written in the form σi ◦ τ j?
(iii) Record the multiplication table for the smallest subgroup of S4

which contains τ and σ. Put your entries in the form σi ◦ τ j when-
ever this makes sense.

(c) Take n = 4. Let σ and τ be the following elements of S4:

σ(1) = 2, σ(2) = 1, σ(3) = 3, σ(4) = 4, and

1If f is an element of S3, then one relatively convenient way to record f is in the form(
1 2 3

f (1) f (2) f (3)

)
.

If one uses this notation, then

σ =

(
1 2 3
2 1 3

)
and τ =

(
1 2 3
2 3 1

)
.

2In the notation of footnote 1,

σ =

(
1 2 3 4
3 2 1 4

)
and τ =

(
1 2 3 4
2 3 4 1

)
.

1
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τ(1) = 2, τ(2) = 3, τ(3) = 4, τ(4) = 1.

(i) How many distinct elements of S4 can be written in the form
σi ◦ τ j?

(ii) Can τ◦σ be written in the form σi ◦ τ j?
(iii) Record the multiplication table for the smallest subgroup of S4

which contains τ and σ. (This part of the problem is unpleasant.
You can skip it if you want. Actually, this problem is the very last
thing in the class notes. See part 5 of the section “Loose Ends”,
which is section 7.C.)

(2) Consider the following sets S with binary operation ∗. Which pairs (S,∗)
form a group? If (S,∗) is not a group, which axioms fail?
(a) Let S be the set of integers Z and let a∗b = ab.
(b) Let S be the set of integers Z and let a∗b = max{a,b}.
(c) Let S be the set of integers Z and let a∗b = a−b.
(d) Let S be the set of integers Z and a∗b = |ab|.
(e) Let S be the set of positive real numbers R+ and a∗b = ab.
(f) Let S be the set of non-zero rational numbers Q\{0} and a∗b = ab.

(3) Prove that multiplication of 2×2 matrices satisfies the associative law.
(4) Is the group GLn(R) an Abelian group? Give a proof or counter example.

Recall that GLn(R) is the group of invertible n×n matrices under multipli-
cation.

(5) Write a multiplication table for the following set of matrices over Q:

I =
[

1 0
0 1

]
, A =

[
−1 0
0 1

]
, B =

[
1 0
0 −1

]
, and C =

[
−1 0
0 −1

]
.

(6) Let G = {x ∈ R | 0 < x and x 6= 1}. Define a ∗ b = alnb, for a and b in G.
Prove that (G,∗) is an Abelian group.

(7) Let S = R \ {−1}. Define ∗ by a ∗ b = a+ b+ ab, for a and b in S. Prove
that (S,∗) is a group.

(8) Prove that a non-Abelian group must have at least five distinct elements.
(9) Let G be a group and let a,b be elements of G. Suppose (ab)2 = a2b2. Prove

that a and b commute.
(10) Is the group of complex numbers {1,−1, i,−i}, under multiplication, a

Klein 4-group?
(11) Let ρ be rotation counter clockwise by 120◦ fixing the origin. Let σ be

reflection of the xy plane across the x axis. Let D3 be the smallest subgroup
of the group of rigid motions which contains ρ and σ.
(a) List the elements of D3.
(b) Find the multiplication table for D3.
(c) Describe the action of each element of D3.
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(d) Show that if τ∈D3, then τ(T ) = T , where T is the triangle with vertices
(1,0), (−1

2 ,
√

3
2 ), and (−1

2 ,−
√

3
2 ).

(12) Suppose H and K are subgroups of the group G. Is the intersection H ∩K a
always subgroup of G? If so, prove the statement. If not, give an example.

(13) Suppose H and K are subgroups of the group G. Is the union H ∪K always
a subgroup of G? If so, prove the statement. If not, give an example.

(14) Let G be the group of rational numbers, under addition, and let H and K be
subgroups of G. Prove that if H 6= {0} and K 6= {0}, then H ∩K 6= {0}.

(15) Let G be a group, and let a ∈ G. The set C(a) = {x ∈ G | xa = ax} of all
elements of G that commute with a is called the centralizer of a.
(a) Prove that C(a) is a subgroup of G.
(b) Prove that 〈a〉 ⊆C(a).
(c) Find the centralizer of ρ in D4.
(d) Find the centralizer of ρ2 in D4.
(e) Find the centralizer in GL2(R) of the matrix[

1 1
0 1

]
.

(16) Find 6 subgroups of D4 in addition to D4 and {id}.
(17) Let U8 be the group of complex numbers which satisfy x8 = 1. Find two

subgroups of U8 in addition to {id} and U8.
(18) Let G be the group U9, which consists of all complex numbers z such that

z9 = 1.
(a) What is the order of each element of G?
(b) Which elements of G are generators of all of G. (Recall that the element

g in the group G generates G, if 〈g〉= G.)
(c) Which elements g of G can be written in the form h2 for some h ∈ G?
(d) Which elements g of G can be written in the form h3 for some h ∈ G?

(19) Let H be a subgroup of the integers under addition. Prove that H is a cyclic
group.

(20) Find three subgroups of D4 of order 4. (A subgroup of order 4 is a subgroup
with 4 elements.)

(21) Let g be an element of the group G and let

(0.0.1) S = {n ∈ Z | gn = id}.

(In other words, S is the set of integers n such that gn is equal to the identity
of G.) Prove that S is a subgroup of (Z,+).

(22) Consider g =

[
0 i
i 0

]
in the group GL2(C). What is the set S (as in (0.0.1))

for g?
(23) Consider g = cos 2π

10 + isin 2π

10 in the unit circle group U . What is the set S
(as in (0.0.1)) for g?
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(24) Let (G,∗) be a group and let H = {g ∈ G | g∗g∗g = id}. Calculate H for
G = D4, G = D3, and G =U6. (Recall that U6 is the set of complex numbers
which are sixth roots of 1.)

(25) Let G be a group. Suppose that g2 is equal to the identity element of G for
all g in G. Prove that G is an Abelian group.

(26) Let G be a finite group with an even number of elements. Prove that there
must exist an element g of G with g not the identity element, but g2 equal to
the identity element.

(27) Find an example of a group G and elements a and b in G such that a and b
each have finite order, but ab does not. (The element a of the group G has
finite order if there exists a positive integer n with an equal to the identity
element. If a does not have finite order, then a has infinite order.)

(28) Let G = D4 and let H be the subgroup of G which is generated by σ. List
the left cosets of H in G.

(29) Let G =U9 and let H be the subgroup of G which is generated by u3, where
u = cos 2π

9 + isin 2π

9 . List the left cosets of H in G.
(30) Let G be the group (R2,+), which consists of all column vectors with two

real entries, under the operation of addition, and let H be the subgroup of

G which consists of all elements of the form
[

a
a

]
, for some real number a.

Notice that each element of G corresponds in a natural way to a point in the
xy-plane. Describe the left cosets of H in G.

(31) Let G be a group. The set Z(G) = {x ∈ G | xg = gx for all g ∈ G} of all
elements that commute with every other element of G is called the center of
G.
(a) Prove that Z(G) is a subgroup of G.
(b) Show that Z(G) =

⋂
a∈G

C(a).

(c) Find the center of D3.
(d) Find the center of D4.
(e) Find the center of GL2(R).

(32) Let G be a cyclic group. Let a and b be elements of G such that a 6= g2 for
any g ∈ G and b 6= g2 for any g ∈ G. Prove that ab is equal to g2 for some
g ∈ G. What happens if the hypothesis that G is a cyclic group is removed?
Is the statement still true? If so, prove it. If not, find a counterexample.
Recall that the group G is cyclic if there is an element h in G such that every
element of G has the form hn for some integer n.

(33) Let a and b be elements of a group G. Suppose that a and b both have finite
order that the orders of a and b are relatively prime. Suppose further that
ab = ba. Prove that the order of ab is equal to the order of a times the order
of b. Recall that the order of a group element a is the least positive integer
n with an equal to the identity element.
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(34) True or False. If true, prove it. If false, give a counterexample. Let G be a
group and let H be the subset H = {g ∈G | g2 = id}. Then H is a subgroup
of G.

(35) (a) Compute the left and right cosets of H = 〈σ〉 in G = D3.
(b) Is ghg−1 in H for all g ∈ G and h in H, where H and G are as given in

(a)?
(c) Compute the left and right cosets of H = 〈ρ〉 in G = D3.
(d) Is ghg−1 in H for all g ∈ G and h in H, where H and G are as given in

(c)?
(36) (a) Suppose that H is a subgroup of the group G with the property that

ghg−1 in H for all g ∈ G and h in H. Let a, b, and c be elements of G
with aH = bH, prove that acH = bcH.

(b) Suppose that H is a subgroup of the group G and that a, b, and c be
elements of G with aH = bH. Must acH = bcH? Prove or give a
counterexample.

(37) Let G be (C \ {0},×). Describe the left cosets of the subgroup H in G
where
(a) H =U4

(b) H = {ru | r is a positive real number and u ∈U4}.
(38) Suppose that H is a subgroup of the group G and ghg−1 is in H for all g∈G

and h ∈ H.
(a) Let h1 be an arbitrary element of H and g be an arbitrary element of

G. Prove that there exists an element h of H with h1 = ghg−1. (It is
possible to give a proof which works for infinite groups as well as finite
groups.)

(b) Let a,b,c, and d be elements of G with aH = bH and cH = dH. Prove
that acH = bdH.

(c) Let S be the set of cosets S = {aH | a ∈ G} of H in G. Problem 38b
shows that the operation on S given by (aH) ∗ (bH) = abH is a well-
defined function. Prove that S is a group. (If you are looking for this
somewhere, S is usually written as G

H and S is called the “quotient group
of G mod H”, or the “factor group of G mod H”. BY THE WAY: S is
not a subset of anything; we have to verify all of the axioms for group.
Fortunately, this is very easy.)

(39) (a) If G is an Abelian group and H is a subgroup of G, then prove that
ghg−1 is in H for all g ∈ G and h ∈ H.

(b) If G is a finite group with 2n elements and H is a subgroup of G with n
elements, then prove that ghg−1 is in H for all g ∈ G and h ∈ H.

(c) If G is a group and H is a subgroup of the center of G, then prove that
ghg−1 is in H for all g ∈ G and h ∈ H. (The word center is defined in
Problem 31.)
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For future reference, a subgroup H of a group G is called a normal subgroup
if ghg−1 is in H for all g ∈ G and h ∈ H.

(40) Work out some examples of G
H as described in problem 38c.

(a) Let G = D4 and H = 〈ρ〉. Problem 39c tells us that it is legal to create
G
H . What is this group? How many elements does it have? What is
the multiplication table? Do you believe that this multiplication makes
sense?

(b) Let G = D4 and H = 〈ρ2〉. Problem 39b tells us that it is legal to create
G
H . What is this group? How many elements does it have? What is
the multiplication table? Do you believe that this multiplication makes
sense?

(c) Let G = Z and H = 5Z. Problem 39a tells us that it is legal to create
G
H . What is this group? How many elements does it have? What is the
addition table? Do you believe that this addition makes sense? (Notice
that the elements of this G

H look like a+H because the operation in G
is called +. Furthermore, the operation in G

H is also called +; that is,
(a+H)+(b+H) = a+b+H.)

(41) Prove that if N is a normal subgroup of the group G, and H is any subgroup
of G, then H ∩N is a normal subgroup of H. The word normal is defined in
problem 39.

(42) Let G be a finite group, and let n be a divisor of |G|. Prove that if H is the
only subgroup of G of order n , then H must be normal in G . (The symbol
|G| means the number of elements in the group G. It is often read as the
order of G.)

(43) Let H and K be normal subgroups of of the group G such that H ∩K = 〈id〉
Prove that hk = kh for all h ∈ H and k ∈ K .

(44) Prove that Z×Z
〈(0,1)〉 is an infinite cyclic group. Recall that the direct product

of Z with Z is the group of ordered pairs (a,b), where a and b are integers.
The operation is coordinate wise addition: (a,b)+ (c,d) = (a+ c,b+ d),
for integers a, b, c, and d. (For a more sophisticated solution to this problem
than you are able to give now, see problem 67.)

(45) Prove that Z×Z
〈(1,1)〉 is an infinite cyclic group. (For a more sophisticated solu-

tion to this problem than you are able to give now, see problem 68.)
(46) Prove that Z×Z

〈(2,2)〉 is not a cyclic group.
(47) Compute the group

Z
〈6〉 ×

Z
〈4〉

〈(2̄, 2̄)〉
.

(For a more sophisticated solution to this problem than you are able to give
now, see problem 69.)
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(48) Compute the group

Z
〈6〉 ×

Z
〈4〉

〈(3̄, 2̄)〉
.

(49) Find all cyclic subgroups of Z
〈8〉 .

(50) Give a subgroup diagram of Z
〈60〉 .

(51) Find the cyclic subgroup of (C\{0},×) generated by
√

2+i
√

2
2 .

(52) Find the order of the cyclic subgroup of (C\{0},×) generated by i.
(53) Find all cyclic subgroups of Z

〈4〉 ×
Z
〈2〉 .

(54) Define ϕ : (C\{0},×)→ (R\{0},×) by ϕ(a+bi) = a2+b2. Prove that ϕ

is a homomorphism.
(55) Which of the following are homomorphisms?

(a) ϕ : (R\{0},×)→ GL2(R) defined by φ(a) =
[

a 0
0 1

]
,

(b) ϕ : (R,+)→ GL2(R) defined by φ(a) =
[

1 a
0 1

]
,

(c) ϕ : Mat2×2(R)→ (R,+) defined by φ

([
a b
c d

])
= a,

Recall that Mat2×2(R) is the Abelian group of 2×2 matrices with real
number entries. The operation in Mat2×2(R) is matrix addition.

(d) ϕ : GL2(R)→ (R\{0},×) defined by φ

([
a b
c d

])
= ab,

(e) ϕ : GL2(R)→ (R,+) defined by φ

([
a b
c d

])
= a+d, and

(f) ϕ : GL2(R)→ (R\{0},×) defined by φ

([
a b
c d

])
= ad−bc.

(56) Let ϕ : G1 → G2 and θ : G2 → G3 be group homomorphisms. Prove that
θ◦ϕ : G1→ G3 is a group homomorphism. Prove that ker(ϕ)⊆ ker(θ◦ϕ).

(57) Prove that the intersection of two normal subgroups of a group G is a normal
subgroup of G.

(58) Let ϕ : G→ G′ be a group homomorphism.
(a) Let id be the identity element of G and id′ be the identity element of G′.

Prove that ϕ(id) = id′.
(b) Let g be an element of G. Prove that ϕ of the inverse of g is equal to the

inverse of ϕ(g).
(c) The image of ϕ is the subset imϕ = {ϕ(g) | g ∈ G} of G′. Prove that

imϕ is a subgroup of G′.
(d) The kernel of ϕ is the subset kerϕ = {g ∈ G | ϕ(g) = id′}, where id′ is

the identity element of G′. Prove that the kernel of ϕ is a subgroup of
G.

(e) Prove that kerϕ is a normal subgroup of G.
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(f) Consider ϕ̄ : G
kerϕ
→ imϕ, which is given by ϕ̄(gkerϕ) = ϕ(g). Prove

that ϕ̄ is a FUNCTION. That is, if g1 kerϕ and g2 kerϕ are equal cosets,
then prove that ϕ̄(g1 kerϕ) = ϕ̄(g2 kerϕ).

(g) Prove that ϕ̄ is a group homomorphism.
(h) Prove that ϕ̄ is onto.
(i) Prove that ϕ̄ is one-to-one.

In problem 58, you have proven the following very important Theorem.
The First Isomorphism Theorem If ϕ : G→G′ is a group homomorphism,
then ϕ̄ : G

kerϕ
→ imϕ, which is given by ϕ̄(gkerϕ) = ϕ(g), is a group iso-

morphism.
(59) Let G be a cyclic group with generator g. Consider the function ϕ : Z→ G

which is given by ϕ(m) = gm for all integers m.
(a) Prove that ϕ is a group homomorphism.
(b) Prove that ϕ is onto.
(c) If G is infinite, then prove that ϕ is an isomorphism.
(d) If G has finite order n, then prove that G is isomorphic to Z

nZ . (I strongly
encourage you to use the First Isomorphism Theorem.)

(60) Let S and T be sets and let ϕ : S→ T be a function. Suppose that ϕ is
one-to-one and onto.
(a) Prove that there exists a FUNCTION θ : T → S with ϕ◦θ equal to the

identity function on T and θ◦ϕ equal to the identity function on S. (The
function θ is usually called the inverse of ϕ.)

(b) Prove that the function θ of part (a) is one-to-one and onto.
(c) If S and T happen to be groups and ϕ happens to be a group homomor-

phism, then prove that θ is also a group homomorphism.
(61) Let ϕ : G→ G′ and ϕ′ : G′ → G′′ be group homomorphisms. Prove that

ϕ′ ◦ϕ : G→ G′′ is a group homomorphism.
(62) Prove that the relationship “is isomorphic to” is an equivalence relation on

the class of all groups. Recall that a relation∼ on a class C is an equivalence
relation if
(a) The relation ∼ is reflexive. If c ∈C, then c∼ c.
(b) The relation∼ is symmetric. If c∼ c′ for some c and c′ in C, then c′∼ c.
(c) The relation ∼ is transitive. If c∼ c′ and c′ ∼ c′′ for some c,c′,c′′ in C,

then c∼ c′′.

In problems 59 and 62, you have proven the following Theorem.

Theorem
(a) If G and G′ are infinite cyclic groups, then G and G′ are isomorphic.
(b) If G and G′ are cyclic groups of finite order n, then G and G′ are iso-

morphic.
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(63) Let ϕ : G→ G′ be a group homomorphism. Prove that ϕ is one-to-one if
and only if kerϕ = {id}.

(64) Let m and n be non-zero integers and let H be the subset

H = {am+bn | a,b ∈ Z}

of Z.
(a) Prove that H is a subgroup of Z.
(b) We have shown that every subgroup of Z is cyclic. So H is cyclic. Let

h0 be a generator of H. (We can insist that h0 is positive.) Prove that h0

is a common divisor of m and n.
(c) Suppose that ` is an integer which happens to divide m and n. Prove

that ` must also divide h0.
(d) Notice that you have proven that h0 is the greatest common divisor of m

and n.

In problem 64, you have proven the following result.

Lemma from Number Theory. If d is the greatest common divisor of the
non-zero integers m and n, then there exist integers r and s so that

d = rn+ sm.

(65) Suppose m and n are relatively prime non-zero integers. Prove that the
groups Z

mnZ and Z
mZ ×

Z
nZ are isomorphic. (An algebraist calls this result the

Chinese Remainder Theorem.)
(66) Let G be a cyclic group of order n; let g be a generator of G; and let H be

a subgroup of G of order m. Lagrange’s Theorem tells us that m|n. Let d
equal the integer n

m . I want you to prove that H is the subgroup of G which
is generated by gd . I propose a couple of steps. First of all, we know that H
is cyclic, so H = 〈gr〉 for some integer r.
(a) Prove that d|r.
(b) Now you know that H = 〈gr〉 ⊆ 〈gd〉. Finish the proof that H = 〈gd〉.

(67) Define a group homomorphism from Z×Z onto Z whose kernel is the sub-
group of Z×Z generated by (0,1). Apply the First Isomorphism Theorem.
(This problem gives a more sophisticated solution to problem 44 than you
were able to give when you first did problem 44.)

(68) Define a group homomorphism from Z×Z onto Z whose kernel is the sub-
group of Z×Z generated by (1,1). Apply the First Isomorphism Theorem.
(This problem gives a more sophisticated solution to problem 45 than you
were able to give when you first did problem 45.)

(69) Consider ϕ : Z
6Z ×

Z
4Z →

Z
3Z ×

Z
2Z , given by

ϕ(a+6Z,b+4Z) = (a+3Z,b+2Z).



10 MATH 546, HOMEWORK, SPRING 2023

(a) Prove that ϕ is a function.
(b) Prove that ϕ is a group homomorphism.
(c) What are the image and kernel of ϕ?
(d) What does the First Isomorphism Theorem tell you?
Problem 69 gives a more sophisticated solution to problem 47 than you were
able to give when you first did problem 47.

(70) Find a group homomorphism from Z×Z onto Z× Z
2Z , whose kernel is the

subgroup of Z×Z which is generated by (2,2). Apply the First Isomor-
phism Theorem.

(71) Exhibit an isomorphism φ : U → G, where U is the unit circle group and G
is a subgroup of GL2(R). Tell me what G is. Tell me what φ is. Prove that
φ is an isomorphism.

(72) Exhibit an isomorphism φ : (R\{0},×)→ (R\{−2},∗), where
a ∗ b = ab+ 2a+ 2b+ 2. Tell me what φ is and prove that φ is an isomor-
phism.

(73) Let H = {id,a,b,c} be a Klein 4-group with a2 = b2 = c2 = id, ab = ba =

c, ac = ca = b, and bc = cb = a. The group H has exactly 4 elements.
Consider the function ϕ : Z×Z→ H which is given by ϕ(m,n) = ambn.
Prove that ϕ is a group homomorphism. Prove that ϕ is onto. What is the
kernel of ϕ? What does the First Isomorphism Theorem tell you?

(74) Is the additive group C isomorphic to the multiplicative group (C\{0},×)?
(75) Prove that every group with three elements is isomorphic to Z

〈3〉 .

(76) Find two Abelian groups of order 8 that are not isomorphic.
(77) Let C2 be the subgroup {1,−1} of (R\{0},×). Prove that (R\{0},×) is

isomorphic to (Rpos,×)×C2, where Rpos is the set of positive real numbers.
(78) Recall the group (S,∗) of problem (7). Prove that (S,∗) is isomorphic to

(R\{0},×).
(79) Let G be a group, and let a be a fixed element of G. Define a function

ϕa : G→ G by ϕa(x) = axa−1, for all x ∈ G. Prove that ϕa is an isomor-
phism.

(80) Let G be a group. Define ϕ : G→ G by ϕ(x) = x−1, for all x ∈ G .
(a) Prove that ϕ is one-to-one and onto.
(b) Prove that ϕ is an isomorphism if and only if G is Abelian.

(81) Define ϕ : (C\{0},×)→ (C\{0},×) by ϕ(a+bi) = a−bi. Prove that ϕ

is an isomorphism.
(82) Prove that (C \ {0},×) is isomorphic to the subgroup of GL2(R) which

consists of all matrices of the form[
a b
−b a

]
with a2 +b2 6= 0.
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(83) Recall the group G of problem (6). Prove that G is isomorphic to the group
(R\{0},×).

(84) Consider the following permutations in S7:

σ =

(
1 2 3 4 5 6 7
3 2 5 4 6 1 7

)
and τ =

(
1 2 3 4 5 6 7
2 1 5 7 4 6 3

)
.

(a) Compute σ◦ τ.
(b) Write σ◦ τ as a product of disjoint cycles.
(c) Write σ and τ each as a product of transpositions.

(85) List all of the elements of S4. Use cycle notation.
(86) Find the number of cycles of each possible length in S5. Find all possible

orders of elements in S5. (Try to do this problem without listing all of the
elements of S5.)

(87) Let S be a set and let a be an element of S. Prove that

{σ ∈ Sym(S) | σ(a) = a}

is a subgroup of Sym(S). Recall that Sym(S) is the group of permutations
of S.


