Math 546, Final Exam , Fall 2011

Write everything on the blank paper provided.

You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam. The exam is worth 100 points. There are $\mathbf{1 3}$ problems.
Write coherently in complete sentences. No Calculators or Cell phones.

1. (7 points) Prove that $\frac{\mathbb{Z}}{n \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{n \mathbb{Z}}$, given by $(a+n \mathbb{Z}, b+n \mathbb{Z}) \mapsto a b+n \mathbb{Z}$, is a well-defined function.
2. (7 points) Recall that \mathbb{Z}_{n}^{\times}is the set of cosets $a+n \mathbb{Z}$ in $\frac{\mathbb{Z}}{n \mathbb{Z}}$ where a and n are relatively prime integers. You proved for homework that \mathbb{Z}_{n}^{\times}is a group under the operation of problem 1 . What is the inverse of $38+105 \mathbb{Z}$ in $\mathbb{Z}_{105}^{\times}$?
3. (7 points) Recall the definition of the group \mathbb{Z}_{16}^{\times}from problem 2. Is this group cyclic? Explain very thoroughly.
4. (7 points) Is $\frac{\mathbb{Z}}{3 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{6 \mathbb{Z}}$, with $a+3 \mathbb{Z} \mapsto a+6 \mathbb{Z}$ a function? Explain very thoroughly.
5. (8 points) Is $\frac{\mathbb{Z}}{6 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{3 \mathbb{Z}}$, with $a+6 \mathbb{Z} \mapsto a+3 \mathbb{Z}$ a function? Explain very thoroughly.
6. (8 points) Define a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ onto \mathbb{Z} whose kernel is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by $(1,1)$. Apply the First Isomorphism Theorem.
7. (8 points) Prove that the groups $\frac{\mathbb{R}}{4 \mathbb{Z}}$ and U are isomorphic.
8. (8 points) Let G be a cyclic group of order n. Prove that G has exactly one subgroup of order m for each divisor m of n.
9. (8 points) State and prove the Chinese Remainder Theorem.
10. (8 points) State the best Theorem we proved concerning the order of a product. Be sure to list all of the hypotheses.
11. (8 points) Give an example of one set X and two functions $f: X \rightarrow X$ and $g: X \rightarrow X$ such that $(g \circ f)(x)=x$ for all $x \in X$, but f is not onto. PLEASE TURN OVER.
12. (8 points) Let G be a group with 35 elements. Suppose that G has exactly one subgroup of order 5 and exactly one subgroup of order 7. Prove that G is a cyclic group.
13. (8 points) Let G be a finite group. Suppose that H is a subgroup of G and the order of H is exactly one half the order of G. Prove that H is a normal subgroup of G.
