Math 546, Final Exam, Fall 2004

The exam is worth 100 points.

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ...; although, by using enough paper, you can do the problems in any order that suits you.

I will grade the exams on Saturday. When I finish, I will e-mail your grade to you.

I will post the solutions on my website when the exam is finished.

- 1. (7 points) STATE and PROVE Cayley's Theorem.
- 2. (7 points) Apply the proof of Cayley's Theorem to the element (1, 2, 3) of the group

 $A_4 = \{(1), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3$

 $(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}.$

(Number the elements of A_4 using the order I in which I listed the elements.) What do you get?

- 3. (7 points) Let $\varphi: G \to G'$ be a group homomorphism. Prove that φ is one-to-one if and only if the kernel of φ is $\{id\}$.
- 4. (7 points) Give an example of a non-abelian group of order 16. A very short explanation will suffice.
- 5. (7 points) Give an example of an abelian, but non-cyclic, group of order 16. Explain.
- 6. (7 points) Let H be the subgroup $\langle (1,2,3) \rangle$ of the group $G = A_4$, and let S be the set of left cosets of H in G. Define multiplication on S by $(g_1H)(g_2H) = (g_1g_2)H$ for all g_1 and g_2 in G. Is S a group? Explain very thoroughly.
- 7. (9 points) Let N be a normal subgroup of the group G and let H be any subgroup of G. Let HN be the subset $\{hn \mid h \in H \text{ and } n \in N\}$ of G.
 - (a) Prove that HN is a subgroup of G.
 - (b) Prove that N is a normal subgroup of HN.
 - (c) Let $\varphi: H \to \frac{HN}{N}$ be the group homomorphism which is given as the composition of inclusion $H \to HN$, followed by the natural quotient map $HN \to \frac{HN}{N}$. What is the kernel of φ ?
 - (d) Apply the First Isomorphism Theorem to φ . (You just proved the "Second Isomorphism Theorem".)

- 8. (7 points) Let V_4 be the subset {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} of S_4 . It is true that V_4 is a normal subgroup of S_4 ; however, you do not have to prove this. What familiar group is isomorphic to $\frac{S_4}{V_4}$? Explain.
- 9. (7 points) List the elements of the group $S_3 \times U_4$. What is the order of each element?
- 10. (7 points) Suppose that G is a group with at least two elements and that the only subgroups of G are {id} and G. What is G? Say as much as you can. Prove your statement.
- 11. (7 points) Let G be a finite group of order n. Let g be an element of G. Prove that g^n is equal to the identity element of G.
- 12. (7 points) Let a and b be elements of finite order in the group G. State and prove an interesting statement which gives the order of ab in terms of the order of a and the order of b.
- 13. (7 points) Suppose that S and T are sets and $\phi: S \to T$ and $\theta: T \to S$ are functions with $\theta \circ \phi$ equal to the identity function on S.
 - (a) Does θ have to be one-to-one? PROVE or give a COUNTEREXAMPLE.
 - (b) Does ϕ have to be onto? PROVE or give a COUNTEREXAMPLE.
- 14. (7 points) Prove that $\frac{\mathbb{R}}{\mathbb{Z}} \cong U$, where U is the unit circle in $(\mathbb{C} \setminus \{0\}, \times)$ and \mathbb{R} and \mathbb{Z} are groups under addition.