Math 546, Exam 2, Solutions, Fall 2011
Write everything on the blank paper provided.
You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only
one side of each piece of paper, and leave 1 square inch in the upper left hand
corner for the staple. If you forget some of these requests, don’t worry about it — I
will still grade your exam.

The exam is worth 50 points. There are 8 problems.
Write coherently in complete sentences.
No Calculators or Cell phones.

I will post the solutions later today.

1. (7 points)Define centralizer. Use complete sentences. Write everything
that is necessary for your definition to make sense, but nothing extra.

Let g be an element in a group G . The centralizer of g in G is the set of all
elements in G which commute with ¢. In other words,

C(g) ={r € G| xg = gz}

2. (7 points) Define order. Use complete sentences. Write everything that
is necessary for your definition to make sense, but nothing extra.

Let ¢g be an element in a group G. The order of g is the least positive integer
n for which ¢" is equal to the identity element of G . If ¢™ is never equal to the
identity element of G, for any positive integer n, then ¢ has infinite order.

3. (6 points) State Lagrange’s Theorem. If H is a subgroup of the finite group
G, then the number of elements in H divides the number of elements in G .

4. (6 points) Prove Lagrange’s Theorem.

The proof has two steps. In step (1) we show that every element of G is in exactly
one left coset of H in G. In step (2) we show that every left coset of H in G
has the same number of elements as H has. Once we have shown (1) and (2), then
we have shown that |G| = |H| x [{aH | a € H}|, in other words, the number of
elements in G is equal to the number of elements in H times the number of left
cosets of H in G.

We prove (1). Take a € G . It is clear that «a is in the left coset aH . We show
that a is not in any other left coset. Suppose that a € bH for some b in G. We



must show that the sets aH and bH are equal. The fact that a € bH tells us
that a = bhg for some fixed hg € H. Take an arbitrary element ah of aH ; so
h € H. We see that ah = bhoh. But H is a group and hy and h arein H ; so
hoh € H and ah € bH . We have shown that aH C bH . Now, take an arbitrary
element bh of bH ;so h € H. We have bh = ahalh. But H is a group with hg
and h in H; so halh isin H and bh € aH . We have shown that bH C aH .
We conclude that aH = bH .

We prove (2). We establish a one-to-one correspondence between the elements
of H and the elements of aH for any fixed left coset aH of H in G. If he H,
then the corresponding element of aH is «a(h) = ah. If z € aH, then the
corresponding element of H is ((x) = a™Vx. It is clear that a: H — aH and
B: aH — H are inverses of one another since 3(a(h)) = B(ah) = a'™Vah = h for
all h € H, and a(B(z)) = a(a™r) = aa™x = x for all x € aH . It follows that
|H| = |aH| for all left cosets aH of H in G.

5. (6 points) State the result about the relationship between the order of
ab, the order of a, and the order of H. Be sure to include all of the
hypotheses, but nothing extra.

Let a and b elements of the group G . Suppose that

(a) a and b have finite order,

(b) the order of a is relatively prime to the order of b, and

(c) ab=ba.

Then the order of ab is equal to the order of a times the order of b.

6. (6 points) Prove the statement in problem 5.

Let m be the order of a and n be the order of b. It is clear from hypothesis (c)
that

(ab)™™ = (@™)"(6")™ = (id)"(id)™ = id.

Thus, the order of ab is at most mn . We must show that the order of ab is at
least mn . That is, suppose that r is a positive integer with (ab)” = id. We must
show that ab < r. Well, hypothesis (c) together with the statement (ab)” = id
tells us that a” = (b™)". Thus, a” € <a> N <b>. The order of a and the order
of b are relatively prime; so Lagrange’s Theorem tells us that <a>N<b> = {id} ;
but a" € <a>N<b>; so a” =id. It follows that m divides r. Furthermore,
(b)) = @" = id; so, id = b". It follows that n divides r. The integers m
and n are relatively prime with m|r and nl|r; hence, mn|r. But r is a positive
integer; so r is some positive integer multiple of mn . We conclude that mn <r
and the proof is complete.
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7. (6 points) List 8 subgroups of D, in addition to all of D, and {id}.
A small amount of explanation would be perfect. I am thinking of
D, as the smallest subgroup of Sym(C) which contains ¢ and p,
where Sym(C) is the group of invertible functions from the complex
plane to the complex plane (with operation composition), p is rotation
counterclockwise by 7/2, and o is reflection across the z-axis.

The non-trivial cyclic subgroups of Dy are <p> = {id,p,p? p3}, <p®> =
{p?,id}, <o> = {o,id}, <po> = {po,id}, <p’o> = {p’c,id}, <pdo> =
{p30,id} . In quiz 3, we found that the centralizer of o in D, is {id,o, p?c, p*} .
The exact same reasoning as we used quiz 3 shows that the centralizer of po in H
is {id, po, p3c, p?} . We have listed 8 subgroups of Dy .

8. (6 points) Give an example of a group G and elements ¢ and b in G
where a and b each have order 2, but ab has order 10.

Let G =Sym(C), a be

27

15 ) © (reflection across the z -axis),

(rotation by
and b be reflection across the z -axis. We see that a and b both are reflections;
so both of these elements of G have order 2. We also see that ab is rotation by

27 which has oder 10



