
Math 546, Exam 2, Spring, 2023

You should KEEP this piece of paper. Write everything on the blank paper
provided. Return the problems in order (use as much paper as necessary),
use only one side of each piece of paper. Number your pages and write
your name on each page. Take a picture of your exam (for your records) just
before you turn the exam in. I will e-mail your grade and my comments to
you. I will keep your exam. Fold your exam in half before you turn it in.

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete, and coherent.

The exam is worth 50 points.

The solutions will be posted later today.

(1) (8 points) State and prove Lagrange’s Theorem.

Lagrange’s Theorem. If H is a subgroup of a finite group G, then the
order of H divides the order of G.

Proof. Observe that every element of G is in exactly one left coset of H
in G. Indeed, if g ∈ G, then g is in the coset gH. Furthermore, if two
left cosets of H in G have any elements in common, then the two cosets
are equal. Let g ∈ aH ∩ bH for some a, b, g in G. We prove aH = bH.

At any rate g ∈ aH ∩ bH; so g = ah1 and g = bh2 for some h1 and h2 in
H.

aH ⊆ bH: Take an arbitrary element ah in aH (with h ∈ H). Observe
that

ah = gh−11 h = bh2h
−1
1 h ∈ bH

because h2, h−11 , and h are all in H and H is a group. Thus aH ⊆ bH.

bH ⊆ aH: Take an arbitrary element bh′ in aH (with h′ ∈ H). Observe
that

bh′ = gh−12 h′ = ah1h
−1
2 h′ ∈ bH

because h1, h−12 , and h′ are all in H and H is a group. Thus bH ⊆ aH.

Let c be the number of left cosets of H in G. (The quantity c is finite
because G is finite and each element of G is in at most one left coset of
H in G.)

Once we show that all cosets have the same number of elements as H
has, then we conclude that the order of G is c times the order of H. The
function f : H → gH, which sends h ∈ H to f(h) = gH is a bijection.
Indeed, the inverse of f is f ′ : gH → H which sends each element θ of



gH to g−1θ. Observe that f ′ is the inverse of f in the sense that f ′ ◦ f is
the identity function on H and f ◦ f ′ is the identity function on gH.

If there is a bijection between two finite sets, then the sets have the same
number of elements.

(2) (5 points) State Cayley’s Theorem.

Cayley’s Theorem. If G is a group, then G is isomorphic to a subgroup
of Sym(G).

(3) (8 points) Let H be a subgroup of (Z,+). Prove that H is a cyclic
group. (Please give a complete proof of the result using the notation
of (Z,+). “We proved a more general statement in class” is not an
acceptable answer.)

If H = {0}, then H is cyclic. Henceforth, we show that every non-zero
subgroup H of (Z,+) is cyclic. Let H be a non-zero subgroup of (Z,+).
Observe that there are some positive integers in H. (Indeed, if h is a
non-zero element of H, then −h is also in H and one of the numbers
{h,−h} is positive.) Let s be the smallest positive element in H. We
claim that H = 〈s〉. The inclusion ⊇ is obvious. We prove ⊆. Let h be
an arbitrary element of H. Divide s into h. It goes q times (for some
integer q) with a remainder of r, for some integer r with 0 ≤ r ≤ s− 1.
Observe that r = h − sq ∈ H (because H is a group and h and s are in
H). But s is the smallest positive element of H; so r must be zero and
h = sq ∈ 〈s〉.

(4) Let H be a subgroup of the group G, let g0 be a fixed element of G,
and

H ′ = {g0hg−10 | h ∈ H}.

(a) (5 points) Prove that H ′ is a subgroup of G.

We check that H ′ is closed. Take h′1 = g0h1g
−1
0 and h′2 = g0h2g

−1
0 in

H ′ for h1 and h2 in H. We see that

h′1h
′
2 = g0h1g

−1
0 g0h2g

−1
0 = g0h1h2g

−1
0

Of course, H is a group; so h1h2 ∈ H and

h′1h
′
2 = g0(an element of H)g−10

is an element of H ′.

If h′ = g0hg
−1
0 is an element of H ′, then the inverse of h′ is equal to

g0h
−1g−10 , which is also in H ′ because h−1 ∈ H (since H is a group).

It is obvious that H ′ is non-empty. Indeed, id = g0 id g
−1
0 is in H ′.



(b) (4 points) Exhibit a group isomorphism φ : H → H ′. Prove that
your φ is an isomorphism.

Define φ : H → H ′ by φ(h) = g0hg
−1
0 . It is obvious that

φ(h1h2) = g0h1h2g
−1
0 = g0h1g

−1
0 g0h2g

−1
0 = φ(h1)φ(h2).

It is obvious that the inverse of φ is given by ξ : H ′ → H with

ξ(h′) = g−10 h′g0.

Observe that ξ is a group homomorphism, ξ ◦ φ is the identity func-
tion on H and φ ◦ ξ is the identity function on H ′.

(c) (4 points) Give an example of G, H, and H ′ with H 6= H ′.

Take G = S3, H =

{
id,

(
1 2 3
2 1 3

)}
, g0 =

(
1 2 3
3 1 2

)
, and

H ′ =

{
id,

(
1 2 3
3 2 1

)}
. Observe that(

1 2 3
3 1 2

)(
1 2 3
2 1 3

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
.

(5) (8 points) Let (G, ∗) be a group and H = {g ∗ g ∗ g | g ∈ G}. Is
H always a subgroup of G? If yes, prove the result. If no, give a
counterexample.

No. Consider S3. Two elements cube to the identity; the other four
elements cube to themselves. So H is{(

1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)}
.

Lagrange’s theorem GUARANTEES that H is not a subgroup of S3 be-
cause 4 does not divide into 6.

(6) (8 points) List all of the subgroups of U12. Each subgroup should be
on your list exactly once. Be sure to explain why you know that you
have recorded all of the subgroups.

The group U12 is a CYCLIC group with generator u = e(2πi)/12. We proved
that the subgroups of the cyclic group G = 〈g〉 of order n are

{〈gd〉 | d is a divisor of n}.

The subgroups of U12 are

〈u1〉 = {1, u, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11} = U12

〈u2〉 = {1, u2, u4, u6, u8, u10} = U6

〈u3〉 = {1, u3, u6, u9} = U4

〈u4〉 = {1, u4, u8, } = U3

〈u6〉 = {1, u6} = U2

〈u12〉 = {1} = U1


