Math 544, Exam 1, Solutions Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet; start each problem on a **new sheet** of paper; and be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.

There are 5 problems. Each problem is worth 10 points. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Find the GENERAL solution of the system of linear equations Ax = b. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. (Problems 1 and 2 have the same matrix A.)

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}.$$

2. Find the GENERAL solution of the system of linear equations Ax = b. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 5 \\ 9 \end{bmatrix}.$$

We do problems 1 and 2 simultaneously We study

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 8 & 3 & 3 \\ 1 & 2 & 2 & 2 & 11 & 5 & 5 \\ 2 & 4 & 4 & 3 & 19 & 8 & 9 \end{bmatrix}$$

Apply the row operations $R_2 \mapsto R_2 - R_1$ and $R_3 \mapsto R_3 - 2R_1$, to get:

$$\begin{bmatrix}
1 & 2 & 2 & 1 & 8 & | & 3 & 3 \\
0 & 0 & 0 & 1 & 3 & | & 2 & 2 \\
0 & 0 & 0 & 1 & 3 & | & 2 & 3
\end{bmatrix}$$

Apply the row operations $R_1 \mapsto R_1 - R_2$ and $R_3 \mapsto R_3 - R_2$, to get:

$$\begin{bmatrix} 1 & 2 & 2 & 0 & 5 & | & 1 & 1 \\ 0 & 0 & 0 & 1 & 3 & | & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & | & 0 & 1 \end{bmatrix}$$

Problem 2 has no solution.

The general solution Problem 1 is

$$\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -5 \\ 0 \\ 0 \\ -3 \\ 1 \end{bmatrix} \middle| x_2, x_3, x_5 \in \mathbb{R} \right\}$$

Some specific solutions are

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} -4 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

(I took $x_2=0$, $x_3=0$, and $x_5=0$ in v_1 ; $x_2=1$, $x_3=0$, and $x_5=0$ in v_2 ; $x_2=0$, $x_3=1$, and $x_5=0$ in v_3 ; and $x_2=0$, $x_3=0$, and $x_5=1$ in v_4 . These specific solutions work because

$$Av_{1} = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+2 \\ 1+4 \\ 2+6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix} \checkmark,$$

$$Av_2 = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1+2+2 \\ -1+2+4 \\ -2+4+6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix} \checkmark,$$

$$Av_3 = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1+2+2 \\ -1+2+4 \\ -2+4+6 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix} \checkmark,$$

$$Av_4 = \begin{bmatrix} 1 & 2 & 2 & 1 & 8 \\ 1 & 2 & 2 & 2 & 11 \\ 2 & 4 & 4 & 3 & 19 \end{bmatrix} \begin{bmatrix} -4 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 - 1 + 8 \\ -4 - 2 + 11 \\ -8 - 3 + 19 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}.\checkmark$$

3. Consider the system of linear equations.

$$\begin{array}{c}
4x_1 + ax_2 = 2 \\
ax_1 + x_2 = -1.
\end{array}$$

- (a) Which values for a cause the system to have no solution?
- (b) Which values for a cause the system to have exactly one solution?
- (c) Which values for a cause the system to have an infinite number of solutions?

Explain.

We study

$$\begin{bmatrix} 4 & a & 2 \\ a & 1 & -1 \end{bmatrix}$$

Apply the row operation $R_2 \mapsto R_2 - \frac{a}{4}R_1$ to get

$$\left[\begin{array}{c|c} 4 & a & 2 \\ 0 & 1 - \frac{a^2}{4} & -1 - \frac{a}{2} \end{array} \right]$$

If $1 - \frac{a^2}{4} \neq 0$, then () a unique solution. Of course, $1 - \frac{a^2}{4} = 0$ exactly when $4 - a^2 = 0$ or a = 2 or -2. So far we know that the system of equations () has exactly one solution when $a \neq 2, -2$. If a = 2, then () is

$$\begin{bmatrix} 4 & a & | & 2 \\ 0 & 0 & | & -2 \end{bmatrix}.$$

In this case (\spadesuit) has no solution. If a = -2, then (\diamondsuit) is

$$\begin{bmatrix} 4 & a & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

and () has infinitely many solutions. We conclude that () has

$$\begin{cases} \text{ exactly one solution } & \text{if } a \neq 2, -2 \\ \text{no solution } & \text{if } a = 2 \\ \text{infinitely many solutions } & \text{if } a = -2 \end{cases}$$

4. (True or False. If true, PROVE the result. If false, give a counter **EXAMPLE**.) If A is a 2×2 matrix with $A^2 = 2A$, then $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ or $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

This statement is false. The matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ also satisfies $A^2 = 2A$ because

$$A^2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \quad \text{and} \quad 2A = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}.$$

5. (True or False. If true, PROVE the result. If false, give a counter EXAMPLE.) If A and B are 2×2 matrices, then $A^2-B^2=(A-B)(A+B)$.

This statement is false. Take $A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ and $B=\begin{bmatrix}0&0\\1&0\end{bmatrix}$. Observe that

$$A^2-B^2=\begin{bmatrix}0&1\\0&0\end{bmatrix}\begin{bmatrix}0&1\\0&0\end{bmatrix}-\begin{bmatrix}0&0\\1&0\end{bmatrix}\begin{bmatrix}0&0\\1&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}-\begin{bmatrix}0&0\\0&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$

On the other hand,

$$(A-B)(A+B) = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix};$$

thus, $(A - B)(A + B) \neq A^2 - B^2$.