

9. Let v_1, \ldots, v_m be vectors in \mathbb{R}^n . For each of the following questions, give one of the following answers: "definitely yes", "definitely no", or "sometimes". Explain your answer.

(a) (3 points) Suppose m = n and the vectors are linearly independent. Do

the vectors span \mathbb{R}^n ?

Yes. The direction theory tells us that in literally is trendent vectors in Rn are abasis For Rh.

(b) (3 points) Suppose m = n + 1. Are the vectors linearly independent?

No. The "short fet" theorem tells us that not vectors in Rh must be linearly dipendent.

(c) (3 points) Suppose m = n + 1. Do the vectors span \mathbb{R}^n ?

(d) (3 points) Suppose m = n - 1 and the vectors are linearly independent. Do the vectors span \mathbb{R}^n ?

No. It the vectors stand ph then they hould be a six's but 18th But the directors theorem tells us that every basis on IRM has nectors.

(e) (3 points) Suppose m = n - 1. Are the vectors linearly independent?

(f) (3 points) Suppose m = n - 1. Do the vectors span \mathbb{R}^n ?

No. Every Spanning set can be I church to a basis.
But every basis Box Rin has hectors.