

4. Suppose A is an $n \times n$ matrix and Ax = 0 has infinitely many solutions. Let b be a vector in \mathbb{R}^n .

(a) Can Ax = b have no solution? (Yes)

(b) Can Ax = b have exactly one solution? (c) Can Ax = b have infinitely many solutions (Yes)

(d) EXPLAIN each answer.

The hypothesis tells us that A is not invertible, so the IMT tells.

The hypothesis tells us that A is not invertible, so the IMT tells.

Us that AX=b has no salution for some chaires of b. Also,

if Ax=b has any solutions, then it has to have an infinite number

Of salutions herause it Ax=b and AY=o then A(x+y) = b. We

are told that there are infinitely many y with Ay=o.

5. Suppose v_1, \ldots, v_n are linearly independent vectors in \mathbb{R}^n . Do v_1, \ldots, v_n have to span \mathbb{R}^n ? **EXPLAIN**.

Yes. The main theaters a feat dirension tells us that h linearly interendent vectors in Rn whe a basis for TRh. thus, these vectors must span Rh.

You may also give an explanation based on the IMT. See exern3.

6. Let \mathcal{B} be the basis $\begin{bmatrix} 3 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 6 \end{bmatrix}$ of \mathbb{R}^2 . Suppose that x is the vector in \mathbb{R}^2 whose coordinate vector with respect to the basis \mathcal{B} is $[x]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. What is the usual representation of x?

$$X = 5 \begin{bmatrix} 3 \\ -5 \end{bmatrix} + 3 \begin{bmatrix} -4 \\ 6 \end{bmatrix} = \begin{bmatrix} 15 - 12 \\ -25 + 18 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$$