4. Suppose that A is a square matrix and A² is the identity matrix. What are the possible eigenvalues for A? Prove your answer.

If \(\lambda \) is a evalue for A, then those exists a cector \(\lambda \) is the A \(\lambda \) \(\lambda \) is the identity matrix. What are the possible eigenvalues for A? Prove your answer.

If \(\lambda \) is a evalue for A? Then those exists a cector \(\lambda \) \(\lambda \) is a \(\lambda \) and \(\lambda \) \(\lambda \) is a \(\lambda \) and \(\lambda \) and \(\lambda \) \(\lambda \) is a \(\lambda \) and \(\lambda \) and \(\lambda \) and \(\lambda \) and \(\lambda \) is a \(\lambda \) and \(\lambda \) and \(\lambda \) and \(\la

5. Give an example of a 3×3 matrix A whose eigenvalues are 0 and 1 such that the eigenspace of A which belongs to $\lambda = 0$ has dimension 1 and the eigenspace of A which belongs to $\lambda = 1$ also has dimension one. The matrix A is to have no other eigenvalues other than 0 and 1.

A= 100 |
The espece belonging to I has basis [0]. The espece belonging to 0 has basis [0].

6. Let V be the set of all 3×3 skew-symmetric matrices. (The matrix A is skew-symmetric if $A^{\rm T} = -A$.) The set V is a vector space. You do NOT have to prove this. Give a basis for V. NO justification is needed.

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$