PRINT Your Name: \qquad
Quiz for March 4, 2010
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW every step. Express your work in a neat and coherent manner. BOX your answer.
Solve the initial value problem $\frac{1}{2} x^{\prime \prime}+3 x^{\prime}+4 x=0, x(0)=2, x^{\prime}(0)=0$.
ANSWER: This is a second order homogeneous linear DE with constant coefficients. We try for solutions of the form $x(t)=e^{r t}$. We see that $x^{\prime}=r e^{r t}$ and $x^{\prime \prime}=r^{2} e^{r t}$. Our candidate is a solution of the differential equation if $\frac{1}{2} r^{2}+3 r+4=0$. Multiply through by $2: r^{2}+6 r+8=0$. Factor: $(r+2)(r+4)=0$. So $r=-2,-4$, The general solution of the DE is $x=c_{1} e^{-2 t}+c_{2} e^{-4 t}$. We compute $x^{\prime}(t)=-2 c_{1} e^{-2 t}-4 c_{2} e^{-4 t}$. Plug in $t=0$:

$$
\begin{gathered}
2=x(0)=c_{1}+c_{2} \\
0=x^{\prime}(0)=-2 c_{2}-4 c_{2}
\end{gathered}
$$

Replace the second equation with E2+2E1 to obtain: $4=-2 c_{2}$; so, $c_{2}=-2$, $c_{1}=4$ and the solution is

$$
x(t)=4 e^{-2 t}-2 e^{-4 t}
$$

