PRINT Your Name: \qquad
Quiz for February 4, 2010
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW every step. Express your work in a neat and coherent manner. BOX your answer.

Derive the solution of $P^{\prime}=k P(P-M), P(0)=P_{0}$, where k and M are positive constants.

ANSWER: We solve $\frac{d P}{P(P-M)}=k d t$. We apply the technique of partial fractions. Write $\frac{A}{P}+\frac{B}{P-M}=\frac{1}{P(P-M)}$. Multiply both sides by $P(P-M)$ to get: $A(P-M)+B P=1$. Plug in $P=0$ to see that $A=\frac{-1}{M}$. Plug in $P=M$ to see $B=\frac{1}{M}$. We must solve

$$
\frac{1}{M}\left(\frac{1}{P-M}-\frac{1}{P}\right) d P=k d t
$$

Integrate both sides:

$$
\frac{1}{M} \ln \left(\frac{P-M}{P}\right)=k t+C
$$

Multiply both sides by M :

$$
\ln \left(\frac{P-M}{P}\right)=M k t+M C
$$

Exponentiate:

$$
\frac{P-M}{P}=K e^{M k t}
$$

where K is the constant $e^{M C}$. This is a good place to evaluate K. Plug $t=0$ in to the equation to see that $\frac{P_{0}-M}{P_{0}}=K$. Multiply both sides by P

$$
P-M=P K e^{M k t}
$$

Subtract $P K e^{M k t}$ from both sides and add M to both sides:

$$
P-P K e^{M k t}=M
$$

Factor out P :

$$
P\left(1-K e^{M k t}\right)=M
$$

Divide:

$$
P=\frac{M}{1-K e^{M k t}} .
$$

Drop $\frac{P_{0}-M}{P_{0}}$ in for K :

$$
P=\frac{M}{1-\left(\frac{P_{0}-M}{P_{0}}\right) e^{M k t}} .
$$

Multiply the top and bottom by P_{0} :

$$
P=\frac{M P_{0}}{P_{0}-\left(P_{0}-M\right) e^{M k t}} .
$$

Thus,

$$
P=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{M k t}}
$$

