PRINT Your Name: \qquad
Quiz for February 11, 2010
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW every step. Express your work in a neat and coherent manner. BOX your answer.
Suppose that a car starts from rest, its engine providing an acceleration of 10 $\mathrm{f} / \mathrm{s}^{2}$, while air resistance provides $.1 \mathrm{f} / \mathrm{s}^{2}$ of deceleration for each foot per second of the car's velocity.
(a) Find the car's maximum possible (limiting) velocity.
(b) Find how long it takes the car to attain 90% of its velocity and how far it travels while doing so.

ANSWER: We solve the initial value problem: $\frac{d v}{d t}=10-(1 / 10) v, v(0)=0$. We have

$$
\frac{d v}{10-v / 10}=d t
$$

Integrate both sides to obtain

$$
-10 \ln |10-v / 10|=t+C
$$

Divide both sides by -10 to obtain

$$
\ln |10-v / 10|=-(t / 10)-(1 / 10) C .
$$

Exponentiate to see

$$
10-v / 10=K e^{-t / 10}
$$

where $K= \pm e^{-(1 / 10) C}$. Plug in $t=0$ to learn that $K=10$. Multiply by 10 :

$$
100-v=100 e^{-t / 10}
$$

which yields

$$
100-100 e^{-t / 10}=v
$$

(a) We see that $\lim _{t \rightarrow \infty} v=100 \mathrm{f} / \mathrm{s}$
(b) We see that $v(t)=90 \%(100)$ when

$$
90=100-100 e^{-t / 10}
$$

We solve for t :

$$
100 e^{-t / 10}=10
$$

$$
\begin{gathered}
e^{-t / 10}=1 / 10 \\
-t / 10=\ln (1 / 10)
\end{gathered}
$$

Of course, we know $\ln (1 / 10)=-\ln 10$; so the answer to the first part of (b) is $t=10 \ln 10 \mathrm{~s}$.
We now find the answer to the second part of (b). Integrate $100-100 e^{-t / 10}=v$ to learn

$$
x=100 t+1000 e^{-t / 10}+C_{0} .
$$

The distance travel by the car from $t=0$ until $t=10 \ln 10$ is

$$
x(10 \ln 10)-x(0)=1000 \ln 10+1000 e^{-\ln 10}-1000=[1000(\ln 10-1)+100] f .
$$

