PRINT Your Name: \qquad
Quiz for April 15, 2010
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW every step. Express your work in a neat and coherent manner. BOX your answer.
Use the method of Laplace transforms to find a non-trivial solution of

$$
t x^{\prime \prime}+(t-2) x^{\prime}+x=0, \quad x(0)=0
$$

You might find of the following formulas to be useful:

$$
\begin{aligned}
& \mathcal{L}(\sin k t)=\frac{k}{s^{2}+k^{2}} \\
& \mathcal{L}(\cos k t)=\frac{s}{s^{2}+k^{2}} \\
& \text { If } \mathcal{L}(f(t))=F(s), \text { then } \mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) \\
& \mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
\end{aligned}
$$

ANSWER: Let $\mathcal{L}(x)=X$. It follows that

$$
\begin{aligned}
& \mathcal{L}\left(x^{\prime}\right)=s \mathcal{L}(x)-x(0)=s X \\
& \mathcal{L}\left(x^{\prime \prime}\right)=s \mathcal{L}\left(x^{\prime}\right)-x^{\prime}(0)=s^{2} X-x^{\prime}(0) \\
& \mathcal{L}\left(t x^{\prime}\right)=-\frac{d}{d s} \mathcal{L}\left(x^{\prime}\right)=-\frac{d}{d s}(s X)=-\left(s X^{\prime}+X\right) \\
& \mathcal{L}\left(t x^{\prime \prime}\right)=-\frac{d}{d s} \mathcal{L}\left(x^{\prime \prime}\right)=-\frac{d}{d s}\left(s^{2} X-x^{\prime}(0)\right)=-\left(s^{2} X^{\prime}+2 s X\right)
\end{aligned}
$$

We solve

$$
\begin{aligned}
& -\left(s^{2} X^{\prime}+2 s X\right)-\left(s X^{\prime}+X\right)-2 s X+X=0 \\
& -s^{2} X^{\prime}-2 s X-s X^{\prime}-2 s X=0 \\
& \left(-s^{2}-s\right) X^{\prime}=4 s X \\
& \frac{d X}{X}=\frac{4 s d s}{-s(s+1)}=\frac{-4 d s}{s+1} \\
& \ln X=-4 \ln |s+1|+C \\
& X=\frac{K}{(s+1)^{4}} .
\end{aligned}
$$

Recall that $\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}$; so $\mathcal{L}\left(t^{3}\right)=\frac{3!}{s^{4}}$. Recall also that if $\mathcal{L}(f(t))=F(s)$, then $\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a)$. It follows that $\mathcal{L}\left(e^{-t} t^{3}\right)=\frac{3!}{(s+1)^{4}}$ and

$$
X=\frac{K}{3!} \mathcal{L}\left(e^{-t} t^{3}\right)
$$

Thus, $x=\mathcal{L}^{-1}(X)=\frac{K}{3!}\left(e^{-t} t^{3}\right)$.

Check: If $x=A e^{-t} t^{3}$, then

$$
\begin{aligned}
& x^{\prime}=A\left(e^{-t} 3 t^{2}-e^{-t} t^{3}\right)=A e^{-t}\left(3 t^{2}-t^{3}\right) \\
& x^{\prime \prime}=A e^{-t}\left(-\left(3 t^{2}-t^{3}\right)+\left(6 t-3 t^{2}\right)\right)=A e^{-t}\left(6 t-6 t^{2}+t^{3}\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
& t x^{\prime \prime}+(t-2) x^{\prime}+x \\
& =t A e^{-t}\left(6 t-6 t^{2}+t^{3}\right)+(t-2) A e^{-t}\left(3 t^{2}-t^{3}\right)+A e^{-t} t^{3} \\
& =A e^{-t}\left[6 t^{2}-6 t^{3}+t^{4}+(t-2)\left(3 t^{2}-t^{3}\right)+t^{3}\right] \\
& =A e^{-t}\left[6 t^{2}-6 t^{3}+t^{4}+\left(3 t^{3}-t^{4}-6 t^{2}+2 t^{3}\right)+t^{3}\right] \\
& =A e^{-t}\left[t^{4}-t^{4}+\left(-6 t^{3}+3 t^{3}+2 t^{3}+t^{3}\right)+6 t^{2}-6 t^{2}\right]=0
\end{aligned}
$$

