
Problem 11 in Section 1.1. Check that y1 = 1
x2 and y2 = lnx

x2 are solutions
of the Differential Equation x2y′′ + 5xy′ + 4y = 0, where y′ = dy

dx
.

Problem 16 in Section 1.1. Find all constants r so that y = erx is a solution
of y′′ + 3y′ − 4y = 0.

Problem 26 in Section 1.1. Verify that y(x) = (x + C) cosx is a solution of
the Differential Equation y′ + y tanx = cosx for any constant C. Find the
constant C for which y(π) = 0.

Problem 30 in Section 1.1. Consider the functions y = g(x) which have
the property that the graph of g is perpendicular to every curve of the form
y = x2+k (k is a constant) wherever they meet. Write a Differential Equation
of the form dy

dx
= some function of x and y, which has g as one of its solutions.

Problem 36 in Section 1.1. In a city with a fixed population of P persons,
the time rate of change of the number N of those persons infected with a
certain contagious disease is proportional to the product of the number who
have the disease and the number who do not.

Problem 45 in Section 1.1. Suppose a population of rodents satisfies the
Differential Equation dP

dt
= kP 2. Initially, there are P (0) = 2 rodents, and

their number is increasing at the rate of dP
dt

= 1 rodent per months when
there are P = 10 rodents. How long will it take for this population to grow
to one hundred rodents? To a thousand? What is happening here?

Problem 46 in Section 1.1. Suppose the volicity v of a motorboat in water
satisfies the Differential Equation dv

dt
= kv2. The initial speed of the boat is

v(0) = 10 meters per second (m/s) and v is decreasing at the rate of 1 m/s2

when v = 5m/s, How long does it take for the velocity of the boat to decrease
to 1m/s? To 1/10 m/s? When does the boat stop?

Problem 6 in Section 1.2. Solve the Initial Value Problem

dy

dx
= x

√
x2 + 9 and y(−4) = 0.

Problem 7 in Section 1.2. Solve the Initial Value Problem

dy

dx
=

10

x2 + 1
and y(0) = 0.

Problem 10 in Section 1.2. Solve the Initial Value Problem

dy

dx
= xe−x and y(0) = 1.



Problem 16 in Section 1.2. The position of an object at time t is x(t). The
acceleration of the object is x′′(t) = 1√

t+4
, the initial velocity is x′(0) = −1

and the initial position is x(0) = 1. Find the formula for x(t).

Problem 32 in Section 1.2. Suppose that a car skids 15 m if it is moving
at 50 km/h whe the brages are applied. Asuming that the car has the same
constant deceleration, how far will it skid if it is moving at 100 km/hr when
the brakes are applied?
Suggestion. I suggest that you ignore the meters, kilometers, and hours
from the given problem and calculate the stopping distance as a function
of the initial speed v0 and the constant deceleration −k. (Notice that k is
positive.) Then see how the stopping distance changes when v0 is replaced
by 2v0.

Problem 33 in Section 1.2. On the planet Gzyx, a ball dropped from a
height of 20 feet hits the ground in 2 seconds. If a ball is dropped from the
top of a 200 foot tall building, how long will it take to hit the ground? With
what speed will it hit the ground? (The fact from Physics is that there is a
constant g1 so that the acceleration of each ball is g1.)
Problem 11 in Section 1.3. What does the existence and uniqueness theo-
rem tell you about the Initial Value Problem:

dy
dx

= 2x2y2 and y(1) = −1,

if anything?

Problem 13 in Section 1.3. What does the existence and uniqueness theo-
rem tell you about the Initial Value Problem:

dy
dx

= y1/3 and y(0) = 1,

if anything?

Problem 15 in Section 1.3. What does the existence and uniqueness theo-
rem tell you about the Initial Value Problem:

dy
dx

=
√
x− y and y(2) = 2,

if anything?
Problem 1 in Section 2.4. Use Euler’s method to approximate y(1

2
) where y

is a solution of the Initial Value Problem

y′ = 2y and y(0) = 2.

Use two steps only; in other words, take h = 1
4
. Compare your approximation

of y(1
2
) to the actual value of y(1

2
).

Problem 9 in Section 1.4. Find the general solution of (1− x2) dy
dx

= 2y.



Problem 13 in Section 1.4. Find the general solution of y3 dy
dx

= (y4+1) cosx.

Problem 21 in Section 1.4. Solve the Initial Value Problem

2y
dy

dx
=

x√
x2 − 16

and y(5) = 2.

Problem 24 in Section 1.4. Solve the Initial Value Problem

(tanx)
dy

dx
= y and y(π

2
) = π

2
.

Problem 35 in Section 1.4. Carbon extracted from an ancient skull con-
tained only one-sixth as much 14C as carbon extracted from present-day
bone. How old is the skull. (refer to example 4).

Problem 37 in Section 1.4. Upon the birth of their first child, a couple de-
posited 5000 in an account that pays interest compounded continuously. The
interest payments are allowed to accumulate. How much will the account
contain on the child’s eighteenth birthday. (Continuously compounded in-
terest is discussed on the bottom of page 35.)

Problem 43 in Section 1.4. A pitcher of buttermilk initially at 25◦C is to
be cooled by setting it on the front porch, where the temperature is 0◦C.
Suppose that the temperature of the buttermilk has dropped to 15◦C after 20
min. When will it be at 5◦C?(refer to example 5).

Problem 1 in Section 2.3. The acceleration of a Maserati is propostional to
the differebce between 250 km/h and the velocty of this sports car. If this
machine can accelerate from rest to 100 km/hr in 10s, how long will it take
for the car to accelerfate from rest to 200 km/hr.

Problem 2 in Section 2.3. Suppose that a body through a resisting medium
with resitance proportional to its velocity v, so that dv

dt
= −kv.

1. Show that its velocity and position at time t are given by

v(t) = v0e
−kt and x(t) = x0 + (v0

k
)(1− e−kt).

2. Conclude that the body travels only a finite distance, and find that
distance.

Problem 3 in Section 2.3. Suppose that a motorboat is moving at 40 ft/s
when its motor suddenly quits, and that 10 s later the boat has slowed to 20
ft/s. Assume, as in Prolem 2, that the resistance it encounters while coasting
is proportional to its velocity. How far will the boat coast in all?

Problem 7 in Section 2.3. Suppose that a car starts from rest, its engine
providing an acceleration of 10 ft/s2, while air resistance provides .1 ft/s2 of
deceleration for each foot per second of the car’s velocity.



1. Find the car’s maximum possible (limiting) velocity.

2. Find how long it takes the car to attain 90% of its limiting velocity, and
how far it travels while doing so.

Problem 13 in Section 1.5. Solve the Initial Value Problem

y′ + y = ex and y(0) = 1.

In this problem ′ means d
dx

.

Problem 21 in Section 1.5.
Solve the Initial Value Problem

xy′ = 3y + x4 cosx and y(2π) = 0.

In this problem ′ means d
dx

.

Problem 25 in Section 1.5. Solve the Initial Value Problem

(x2 + 1)
dy

dx
+ 3x3y = 6xe−(3/2)x2

and y(0) = 1.

Problem 33 in Section 1.5. A tank contains 1000 liters (L) of a solution
consisting of 100 kg of salt dissolved in water. Pure water is pumped into
the tank at the rate of 5 L/s, and the mixture – kept uniform by stirring – is
pumped out at the same rate. How long will it be until 10 kg of salt remain
in the tank?

Problem 37 in Section 1.5. A 400-gal tank initially contains 100 gal of brine
containing 50 lb of salt. Brine containing 1 lb of salt per gallon enters the
tank at the rate of 5 gal/s, and the well-mixed brine in the tank flows out
at the rate of 3 gal/s. How much salt will the tank contain when it is full of
brine?

Problem 1 in Section 1.6. Solve (x+ y)y′ = x− y.

Problem 3 in Section 1.6. Solve xy′ = y + 2
√
xy. Solve xy′ = y + 2

√
xy.

Problem 14 in Section 1.6. Solve yy′ + x =
√

x2 + y2.

Problem 15 in Section 1.6. Solve x(x+ y)y′ + y(3x+ y) = 0.

Problem 17 in Section 1.6. Solve y′ = (4x+ y)2.

Problem 18 in Section 1.6. Solve (x+ y)y′ = 1.

Problem 19 in Section 1.6. Solve x2y′ + 2xy = 5y3.



Problem 20 in Section 1.6. Solve y2y′ + 2xy3 = 6x.

Problem 21 in Section 1.6. Solve y′ = y + y3.

Problem 9 in Section 2.1 The time rate of change of a rabbit population P is
proportional to the square root of P . At time t = 0 (months) the population
numbers 100 rabbits and is increasing at the rate of 20 rabbits per month.
How many rabbits will there be one year later?

Problem 15 in Section 2.1 Consider a population P (t) which satisfies the
logistic equation dP

dt
= aP − bP 2, where a and b are constants, B = aP is the

birth rate, and D = bP 2 is the death rate. Write M in terms of B(0), D(0),
and P (0).

Comment The point of the problem is that we know the solution of

dP
dt

= kP (M − P ).

In particular, we know that in the long term the population will approach M .
Someone interested in the population can probably calculate B(0), D(0),

and P (0). If we can express M in terms of B(0), D(0), and P (0), then we
can make a plausible prediction of what the population will do without doing
anymore calculating.

Problem 16 in Section 2.1 A rabbit population satisfies the Logistic Dif-
ferential Equation dP

dt
= aP − bP 2. If the initial population is 120 rabbits

and there are 8 births per month and 6 deaths per month occurring at time
t = 0, how many months does it take for P (t) to reach 95% of the limiting
population M?

Problem 18 in Section 2.1 Consider a population P (t) which satisfies the
extinction/explosion Differential Equation dP

dt
= aP 2 − bP , where B = aP 2

is the time rate at which births occur and D = bP is the rate at which deaths
occur. If the initial population is P (0) = P0 and B0 births per month and
D0 births per month are occurring at time t = 0, show that the threshold
population is M = D0P0/B0.

Problem 19 in Section 2.1 Consider an alligator population which satisfies
the extinction/explosion Differential Equation as in Problem 18. If the initial
population is 100 alligators and there are 10 births per month and 9 deaths
per month occurring at time t = 0, how many months does it take for P (t)
to reach 10 times the threshold population M?

Problem 32 in Section 2.1 Solve the Initial Value Problem

dP
dt

= kP (M − P ) P (0) = P0.

Draw the solution for



• P0 = M ,

• M < P0, and

• P0 < M .

Problem 33 in Section 2.1 Solve the Initial Value Problem

dP
dt

= kP (P −M) P (0) = P0.

Draw the solution for

• P0 = M ,

• M < P0, and

• P0 < M .

Problem 1 in Section 2.2. (You can ignore the instruction about slope
fields.) Consider the Differential Equation dx

dt
= x− 4.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?

• Sketch the solution of the Initial Value problem

dx

dt
= x− 4 x(0) = x0,

for a few choices of x0.

• Solve the Differential Equation. (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 3 in Section 2.2. (You can ignore the instruction about slope
fields.) Consider the Differential Equation dx

dt
= x2 − 4x.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?



• Sketch the solution of the Initial Value problem

dx

dt
= x2 − 4x x(0) = x0, (1)

for a few choices of x0.

• Solve the Initial Value Problem (1). (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 5 in Section 2.2. (You can ignore the instruction about slope
fields.) Consider the Differential Equation dx

dt
= x2 − 4.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?

• Sketch the solution of the Initial Value problem

dx

dt
= x2 − 4 x(0) = x0, (2)

for a few choices of x0.

• Solve the Initial Value Problem (2). (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 7 in Section 2.2. (You can ignore the instruction about slope
fields.)

Consider the Differential Equation dx
dt

= (x− 2)2.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?

• Sketch the solution of the Initial Value problem

dx

dt
= (x− 2)2 x(0) = x0, (3)

for a few choices of x0.



• Solve the Initial Value Problem (3). (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 9 in Section 2.2. (You can ignore the instruction about slope
fields.)

Consider the Differential Equation dx
dt

= x2 − 5x+ 4.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?

• Sketch the solution of the Initial Value problem

dx

dt
= x2 − 5x+ 4 x(0) = x0, (4)

for a few choices of x0.

• Solve the Initial Value Problem (4). (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 11 in Section 2.2. (You can ignore the instruction about slope
fields.)

Consider the Differential Equation dx
dt

= (x− 1)3.

• What are the equilibrium solutions of this autonomous Differential
Equation?

• Draw the phase diagram for this Differential Equation.

• Are the equilibrium solutions of this Differential Equation stable or un-
stable?

• Sketch the solution of the Initial Value problem

dx

dt
= (x− 1)3 x(0) = x0, (5)

for a few choices of x0.

• Solve the Initial Value Problem (5). (Be sure that your answer is in the
form x is equal to some function of t.)

Problem 2 in Section 3.1.



(a) Verify that y1 = e3x and y2 = e−3x both are solutions of the Differential
Equation y′′ − 9y = 0.

(b) Solve the Initial Value Problem:

y′′ − 9y = 0, y(0) = −1, y′(0) = 15.

Problem 17 in Section 3.1. Show that y = 1
x

is a solution of y′ + y2 = 0, but
that y = c

x
is not a solution of y′+ y2 = 0, unless c happens to be zero or one.

Problem 18 in Section 3.1. Show that y = x3 is a solution of yy′′ = 6x4, but
that y = cx3 is not a solution of yy′′ = 6x4, unless c happens to be 1 or −1.

The point of this problem is that our tricks for linear Differential
Equations do not work for non-linear Differential Equations. In partic-
ular if y1 is a solution of a homogeneous linear Differential Equation,
then cy1 is also a solution of the Differential Equation. This statement is
not true for non-linear Differential Equations.

Problem 19 in Section 3.1.
Show that y1 = 1 and y2 =

√
x are both solutions of yy′′ + (y′)2 = 0, but

the sum y1 + y2 = 1 +
√
x is not a solution of yy′′ + (y′)2 = 0.

Problem 20 in Section 3.1. Are the functions f(x) = π and g(x) = cos2 x+
sin2 x linearly independent or linearly dependent?

Problem 22 in Section 3.1. Are the functions f(x) = 1+x and g(x) = 1+ |x|
linearly independent or linearly dependent?

Problem 29 in Section 3.1. Show that y1 = x2 and y2 = x3 are both solu-
tions of the Initial Value Problem

x2y′′ − 4xy′ + 6y = 0, y(0) = 0, y′(0) = 0.

Why doesn’t the Existence and Uniqueness Theorem apply to this problem?

Problem 3 in Section 3.2. Find a nontrivial linear combination of f(x) = 0,
g(x) = sin x, and h(x) = ex which is the constant function zero.

Problem 4 in Section 3.2. Find a nontrivial linear combination of f(x) = 17,
g(x) = 2 sin2 x, and h(x) = 3 cos2 x which is the constant function zero.

Problem 14 in Section 3.2. The problem tells us that y1 = ex, y2 = e2x, and
y3 = e3x all are solutions of the Differential equation y′′′−6y′′+11y′−6y = 0.
We are supposed to solve the Initial Value Problem

y′′′ − 6y′′ + 11y′ − 6y = 0, y(0) = 0, y′(0) = 0, y′′(0) = 3.



Problem 16 in Section 3.2.

The problem tells us that y1 = ex, y2 = e2x, and y3 = xe2x all are solutions
of the Differential equation y′′′−5y′′+8y′−4y = 0. We are supposed to solve
the Initial Value Problem

y′′′ − 5y′′ + 8y′ − 4y = 0, y(0) = 1, y′(0) = 4, y′′(0) = 0.

Problem 21 in Section 3.2. The problem tells us that yhomog = c1 cosx +
c2 sinx is the general solution of the homogeneous problem y′′ + y = 0 and
ypartic = 3x is a particular solution of the Differential Equation y′′ + y = 3x.
The problem tells us to find the solution of the Initial Value Problem

y′′ + y = 3x, y(0) = 2, and y′(0) = −2.

Problem 26 in Section 3.2. Find a particular solution for each of the fol-
lowing Differential Equations.

(a) y′′ + 2y = 4,

(b) y′′ + 2y = 6x,

(c) y′′ + 2y = 6x+ 4.

We learn how to find particular solutions of non-homogeneous linear Dif-
ferential Equations with constant coefficients in section 3.5. The basic tech-
nique is, “Guess the form of the answer and then adjust the coefficients”.
This problem serves as a warm-up for the procedure.

Problem 1 in Section 3.3. Find the general solution of y′′ − 4y = 0.

Problem 3 in Section 3.3. Find the general solution of y′′ + 3y′ − 10y = 0.
Problem 5 in Section 3.3. Find the general solution of y′′ + 6y′ + 9y = 0.
Problem 11 in Section 3.3. Find the general solution of y(4)−8y(3)+16y′′ =
0.

Problem 13 in Section 3.3. Find the general solution of 9y′′′+12y′′+4y′ = 0.

Problem 17 in Section 3.3. Find the general solution of 6y′′′′+11y′′+4y = 0.

Problem 35 in Section 3.3. Find the general solution of

6y′′′′ + 5y′′′ + 25y′′ + 20y′ + 4y = 0.

Hint: one solution is y = cos(2x).

Problem 49 in Section 3.3. Solve the Initial Problem



y′′′′ = y′′′ + y′′ + y′ + 2y, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 30

Hint: one solution is y = cos(2x).

Problem 15 in Section 3.4. Solve the Initial Problem

1
2
x′′ + 3x′ + 4x = 0, x(0) = 2, x′(0) = 0.

Put your answer in the form x(t) = Ceat cos(bt − α) if this makes sense.
Sketch the graph of x = x(t).

Problem 17 in Section 3.4. Solve the Initial Problem

x′′ + 8x′ + 16x = 0, x(0) = 5, x′(0) = −10.

Put your answer in the form x(t) = Ceat cos(bt − α) if this makes sense.
Sketch the graph of x = x(t).

Problem 19 in Section 3.4. Solve the Initial Problem

4x′′ + 20x′ + 169x = 0, x(0) = 4, x′(0) = 16.

Put your answer in the form x(t) = Ceat cos(bt − α) if this makes sense.
Sketch the graph of x = x(t).

Problem 21 in Section 3.4. Solve the Initial Problem

x′′ + 10x′ + 125x = 0, x(0) = 6, x′(0) = 50.

Put your answer in the form x(t) = Ceat cos(bt − α) if this makes sense.
Sketch the graph of x = x(t).

Problem 2 in Section 3.5. Find a particular solution of

y′′ − y′ − 2y = 3x+ 4.

Problem 3 in Section 3.5. Find a particular solution of

y′′ − y′ − 6y = 2 sin 3x.

Problem 5 in Section 3.5. Find a particular solution of

y′′ + y′ + y = sin2 x.

Problem 6 in Section 3.5. Find a particular solution of

2y′′ + 4y′ + 7y = x2.



Problem 33 in Section 3.5. Solve the initial value problem

y′′ + 9y = sin 2x, y(0) = 1, y′(0) = 0.

Problem 37 in Section 3.5. Solve the Initial Value Problem

y′′′ − 2y′′ + y′ = 1 + xex, y(0) = y′(0) = 0, y′′(0) = 1.

Problem 39 in Section 3.5. Solve the Initial Value Problem

y′′′ + y′′ = x+ e−x, y(0) = 1, y′(0) = 0, y′′(0) = 1.

Problem 43 in Section 3.5.

(a) Find a Trig identity which expresses cos3 x in terms of cos ax for various
values of a. (Hint: Use Euler’s Identity.)

(b) Find the general solution of

y′′ + 4y = cos3 x.

Problem 1 in Section 7.1. Use the definition of L to compute L(f(t)) for
f(t) = t.

Problem 2 in Section 7.1. Use the definition of L to compute L(f(t)) for
f(t) = t2.

Problem 3 in Section 7.1. Use the definition of L to compute L(f(t)) for
f(t) = e3t+1.

Problem 5 in Section 7.1. Use the definition of L to compute L(f(t)) for
f(t) = et−e−t

2
.

Problem 7 in Section 7.1. Compute the Laplace transform of the function
f(t) whose picture is on the next page.





Problem 9 in Section 7.1. Compute the Laplace transform of the function
f(t) whose picture is on the next page.





Problem 11 in Section 7.1. Compute L(f(t)) for f(t) =
√
t+ 3t.

Problem 13 in Section 7.1. Compute L(f(t)) for f(t) = t− 2e3t.

Problem 17 in Section 7.1. Compute L(f(t)) for f(t) = cos2 2t.

Problem 23 in Section 7.1. Find the inverse Laplace transform of F (s) = 3
s4

.

Problem 25 in Section 7.1. Find the inverse Laplace transform of
F (s) = 1

s
− 2

s5/2
.

Problem 27 in Section 7.1. Find the inverse Laplace transform of
F (s) = 3

s−4
.

Problem 29 in Section 7.1. Find the inverse Laplace transform of
F (s) = 5−3s

s2+9
.

Problem 1 in Section 7.2. Use Laplace transforms to solve the Initial Value
Problem

x′′ + 4x = 0, x(0) = 5, x′(0) = 0.

Problem 7 in Section 7.2.
Use Laplace transforms to solve the Initial Value Problem

x′′ + x = cos 3t, x(0) = 1, x′(0) = 0.

Problem 17 in Section 7.2. Find the inverse Laplace transform of

F (s) =
1

s(s− 3)

Problem 21 in Section 7.2. Find the inverse Laplace transform of

F (s) =
1

s2(s2 + 1)

Problem 23 in Section 7.2. Find the inverse Laplace transform of

F (s) =
1

s2(s2 − 1)
.

Problem 31 in Section 7.2. In class we calculated

L(t cos kt) = s2 − k2

(s2 + k2)2
and L(sin kt) = k

(s2 + k2)
.



Use these facts to calculate

L−1

(
1

(s2 + k2)2

)
.

Problem 1 in Section 7.3. Find the Laplace transform of f(t) = t4eπt.

Problem 3 in Section 7.3. Find the Laplace transform of f(t) = e−2t sin 3πt.

Problem 5 in Section 7.3. Find the inverse Laplace transform of
F (s) = 3

2s−4
.

Problem 7 in Section 7.3. Find the inverse Laplace transform of
F (s) = 1

s2+4s+4
.

Problem 9 in Section 7.3. Find the inverse Laplace transform of F (s) =
3s+5

s2−6s+25
.

Problem 13 in Section 7.3. Find the inverse Laplace transform of F (s) =
5−2s

s2+7s+10
.

Problem 19 in Section 7.3. Find the inverse Laplace transform of
F (s) = s2−2s

s4+5s2+4
.

Problem 27 in Section 7.3. Use Laplace transforms to solve the Initial Value
Problem:

x′′ + 6x′ + 25x = 0, x(0) = 2, x′(0) = 3.

Problem 33 in Section 7.3. Use Laplace transforms to solve the Initial Value
Problem:

x′′′′ + x = 0, x(0) = x′(0) = x′′(0) = 0, x′′′(0) = 1.

(You probably want to use some of the problems 23-26 in 7.3 when you do
this problem.)

Problem 37 in Section 7.3. Use Laplace transforms to solve the Initial Value
Problem:

x′′ + 4x′ + 13x = te−t, x(0) = 0, x′(0) = 2.


