\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.
E-mail your solution to
kustin@math.sc.edu

Quiz 9, Monday, April 5, 2021

Find the solution of the Initial Value Problem $y^{\prime \prime}+9 y=\sin 2 x, y(0)=1, y^{\prime}(0)=0$.
Answer. Of course you know that the general solution of $y^{\prime \prime}+9 y=0$ is $y=c_{1} \cos 3 x+c_{2} \sin 3 x$. Also, it is easy to see that $y_{\text {particular }}=\frac{1}{5} \sin 2 x$ is a particular solution of the given DE. It follows that the general solution of the $\mathrm{DE} y^{\prime \prime}+9 y=\sin 2 x$ is $y=c_{1} \cos 3 x+c_{2} \sin 3 x+\frac{1}{5} \sin 2 x$. We must find c_{1} and c_{2} so that the Initial Conditions $y(0)=1$ and $y^{\prime}(0)=0$ are also satisfied. We compute $y^{\prime}=-3 c_{1} \sin 3 x+3 c_{2} \cos 3 x+\frac{2}{5} \cos 2 x$. Plug $x=0$ into y and y^{\prime} to obtain:

$$
1=y(0)=c_{1} \quad \text { and } \quad 0=y^{\prime}(0)=3 c_{2}+\frac{2}{5}
$$

We conclude that $c_{1}=1$ and $c_{2}=-\frac{2}{15}$. Thus the answer is

$$
y=\cos 3 x-\frac{2}{15} \sin 3 x+\frac{1}{5} \sin 2 x
$$

Check. We take derivatives of $y=\cos 3 x-\frac{2}{15} \sin 3 x+\frac{1}{5} \sin 2 x$ to obtain $y^{\prime}=-3 \sin 3 x-\frac{2}{5} \cos 3 x+$ $\frac{2}{5} \cos 2 x$ and $y^{\prime \prime}=-9 \cos 3 x+\frac{6}{5} \sin 3 x-\frac{4}{5} \sin 2 x$. It is clear that $y^{\prime \prime}+9 y=3 \sin 2 x$. We plug 0 in for x to see that $y(0)=1$ and $y^{\prime}(0)=-\frac{2}{5}+\frac{2}{5}=0$.

