PRINT Your Name: \qquad
Quiz for June 18, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.
Find a particular solution of $y^{\prime \prime}-y^{\prime}-6 y=2 \sin 3 x$.
ANSWER: We look for a solution of the form $y=A \sin 3 x+B \cos 3 x$. We compute

$$
\begin{aligned}
& y^{\prime}=3 A \cos 3 x-3 B \sin 3 x \\
& y^{\prime \prime}=-9 A \sin 3 x-9 B \cos 3 x .
\end{aligned}
$$

Plug our candidate into the DE to get

$$
\left.\begin{array}{l}
-9 A \sin 3 x-9 B \cos 3 x-(-3 B \sin 3 x+3 A \cos 3 x) \\
-6(A \sin 3 x+B \cos 3 x)
\end{array}\right\}=2 \sin 3 x .
$$

We want

$$
(-9 A+3 B-6 A) \sin 3 x+(-9 B-3 A-6 B) \cos 3 x=2 \sin 3 x
$$

We want

$$
\begin{aligned}
& -15 A+3 B=2 \\
& -3 A-15 B=0 .
\end{aligned}
$$

We want

$$
\begin{gathered}
-5 A+B=2 / 3 \\
-A-5 B=0
\end{gathered}
$$

We want

$$
\left[\begin{array}{cc}
-5 & 1 \\
-1 & -5
\end{array}\right]\left[\begin{array}{c}
A \\
B
\end{array}\right]=[2 / 3 / / 0]
$$

Multiply both sides of the equation on the left by $\left[\begin{array}{cc}-5 & -1 \\ 1 & -5\end{array}\right]$. We want

$$
\left[\begin{array}{cc}
-5 & -1 \\
1 & -5
\end{array}\right]\left[\begin{array}{cc}
-5 & 1 \\
-1 & -5
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{cc}
-5 & -1 \\
1 & -5
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
0
\end{array}\right]
$$

We want

$$
\left[\begin{array}{cc}
26 & 0 \\
0 & 26
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{c}
-10 / 3 \\
2 / 3
\end{array}\right]
$$

Take $A=\frac{-10}{3} \frac{1}{26}=\frac{-5}{39}$ and $B=\frac{2}{3} \frac{1}{26}=\frac{1}{39}$. Our answer is

$$
y=\frac{-5}{39} \sin 3 x+\frac{1}{39} \cos 3 x \text {. }
$$

