PRINT Your Name: \qquad
Quiz 8, Fall, 2012 - October 30
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

1. Find the general solution of $6 y^{(4)}+5 y^{(3)}+25 y^{\prime \prime}+20 y^{\prime}+4 y=0$. You might find it helpful to know that $y=\cos 2 x$ is a solution of the Differential Equation.

Answer. The hint tells us that $2 i$ and $-2 i$ are roots of the characteristic polynomial

$$
6 r^{4}+5 r^{3}+25 r^{2}+20 r+4
$$

It follows that $(r-2 i)(r+2 i)=r^{2}+4$ is a factor of the characteristic polynomial. The other factor is $6 r^{2}+5 r+1$ and this may be found by performing long division:

$$
6 r^{4}+5 r^{3}+25 r^{2}+20 r+4=\left(r^{2}+4\right)\left(6 r^{2}+5 r+1\right)=\left(r^{2}+4\right)(2 r+1)(3 r+1)
$$

The roots of the characteristic polynomial are $\pm 2 i,-1 / 2$, and $-1 / 3$. The general solution of the Differential equation is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+c_{3} e^{-x / 2}+c_{4} e^{-x / 3}
$$

Check We take derivatives of our proposed answer:

$$
\begin{aligned}
& y^{\prime}=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x-(1 / 2) c_{3} e^{-x / 2}-(1 / 3) c_{4} e^{-x / 3} \\
& y^{\prime \prime}=-4 c_{1} \cos 2 x-4 c_{2} \sin 2 x+(1 / 4) c_{3} e^{-x / 2}+(1 / 9) c_{4} e^{-x / 3} \\
& y^{\prime \prime \prime \prime}=8 c_{1} \sin 2 x-8 c_{2} \cos 2 x-(1 / 8) c_{3} e^{-x / 2}-(1 / 27) c_{4} e^{-x / 3} \\
& y^{\prime \prime \prime \prime}=16 c_{1} \cos 2 x+16 c_{2} \sin 2 x+(1 / 16) c_{3} e^{-x / 2}+(1 / 81) c_{4} e^{-x / 3}
\end{aligned}
$$

Plug our proposed solution back into the DE

$$
\begin{aligned}
& 6\left(16 c_{1} \cos 2 x+16 c_{2} \sin 2 x+(1 / 16) c_{3} e^{-x / 2}+(1 / 81) c_{4} e^{-x / 3}\right) \\
& +5\left(8 c_{1} \sin 2 x-8 c_{2} \cos 2 x-(1 / 8) c_{3} e^{-x / 2}-(1 / 27) c_{4} e^{-x / 3}\right) \\
& +25\left(-4 c_{1} \cos 2 x-4 c_{2} \sin 2 x+(1 / 4) c_{3} e^{-x / 2}+(1 / 9) c_{4} e^{-x / 3}\right) \\
& +20\left(-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x-(1 / 2) c_{3} e^{-x / 2}-(1 / 3) c_{4} e^{-x / 3}\right) \\
& +4\left(c_{1} \cos 2 x+c_{2} \sin 2 x+c_{3} e^{-x / 2}+c_{4} e^{-x / 3}\right) \\
& =\left\{\begin{array}{l}
c_{1}[(96-100+4) \cos 2 x+(40-40) \sin 2 x] \\
+c_{2}[(-40+40) \cos 2 x+(96-100+4) \sin 2 x] \\
+c_{3}\left(\frac{6-10+100-160+64}{16}\right) e^{-x / 2} \\
+c_{4}\left(\frac{6-15+225-540+324}{81}\right) e^{-x / 3} \\
=0 .
\end{array}\right.
\end{aligned}
$$

