Quiz 6, March 24, 2017, 1:15 class

Solve the spring problem $x^{\prime \prime}+8 x^{\prime}+16 x=0, x(0)=5, x^{\prime}(0)=-10$. Put the answer in the form $x(t)=C e^{-p t} \cos (\omega t-\alpha)$, if this makes sense.

Answer: This is a second order linear homogeneous DE with constant coefficients. We look for solutions of the form $x(t)=e^{r t}$. In other words, we consider the the characteristic polynomial

$$
\begin{gathered}
r^{2}+8 r+16=0 \\
(r+4)^{2}=0
\end{gathered}
$$

Thus, $x(t)=e^{-4 t}$ and $x(t)=t e^{-4 t}$ are solutions of the DE. The general solution of the DE is

$$
x(t)=e^{-4 t}\left(c_{1}+c_{2} t\right)
$$

We compute

$$
x^{\prime}(t)=e^{-4 t}\left(c_{2}\right)-4 e^{4 t}\left(c_{1}+c_{2} t\right)
$$

Plug in $t=0$ to evaluate the constants

$$
5=x(0)=c_{1} \quad \text { and } \quad-10=x^{\prime}(0)=c_{2}-4 c_{1}
$$

So, $c_{1}=5$ and $c_{2}=10$. The solution of the IVP is

$$
x(t)=5 e^{-4 t}(1+2 t)
$$

Check: Plug

$$
\left\{\begin{array}{l}
x(t)=5 e^{-4 t}(1+2 t) \\
x^{\prime}(t)=5 e^{-4 t}(2)-20 e^{-4 t}(1+2 t)=e^{-4 t}(-10-40 t) \\
x^{\prime \prime}(t)=e^{-4 t}(-40)-4 e^{-4 t}(-10-40 t)=160 t e^{-4 t}
\end{array}\right.
$$

into the DE to get

$$
\begin{gathered}
160 t e^{-4 t}+8\left(e^{-4 t}(-10-40 t)\right)+16\left(5 e^{-4 t}(1+2 t)\right) \\
=e^{-4 t}(160 t-80-320 t+80+160 t)=0 .
\end{gathered}
$$

We also calculate $x(0)=5 \checkmark$ and $x^{\prime}(0)=-10 \checkmark$.

