Quiz 6, March 21, 2017, 11:40 class

Find a particular solution of $y^{\prime \prime}-y^{\prime}-6 y=2 \sin 3 x$.
Answer: We look for a solution of the form $y=A \sin 3 x+B \cos 3 x$. We compute:

$$
\begin{aligned}
y^{\prime} & =3 A \cos 3 x-3 B \sin 3 x \\
y^{\prime \prime} & =-9 A \sin 3 x-9 B \cos 3 x
\end{aligned}
$$

Plug our candidate into the DE to obtain:

$$
(-9 A \sin 3 x-9 B \cos 3 x)-(3 A \cos 3 x-3 B \sin 3 x)-6(A \sin 3 x+B \cos 3 x)=2 \sin 3 x
$$

Equate the coefficients of $\sin 3 x$ and the coefficients of $\cos 3 x$. We hope to solve

$$
-9 A+3 B-6 A=2 \quad \text { and } \quad-9 B-3 A-6 B=0
$$

We hope to solve

$$
\left\{\begin{aligned}
-15 A+3 B & =2 \\
-3 A-15 B & =0
\end{aligned}\right.
$$

Divide E2 by - 3 :

$$
\left\{\begin{array}{l}
-15 A+3 B=2 \\
A+5 B=0
\end{array}\right.
$$

$E 1 \rightarrow E 1+15 E 2$

$$
\left\{\begin{array}{c}
+78 B=2 \\
A+5 B=0
\end{array}\right.
$$

$B=1 / 39, A=-5 / 39$. We have calculated that $y=-5 / 39 \sin 3 x+1 / 39 \cos 3 x$ is a solution of the differential equation.
Check: Plug

$$
\left\{\begin{array}{l}
y=(1 / 39)(-5 \sin 3 x+1 \cos 3 x) \\
y^{\prime}=(1 / 39)(-3 \sin 3 x-15 \cos 3 x) \\
y^{\prime \prime}=(1 / 39)(+45 \sin 3 x-9 \cos 3 x)
\end{array}\right.
$$

into the DE to obtain

$$
\begin{gathered}
(1 / 39)((+45 \sin 3 x-9 \cos 3 x)-(-3 \sin 3 x-15 \cos 3 x)-6(-5 \sin 3 x+1 \cos 3 x) \\
(1 / 39)(78 \sin 3 x+0 \cos 3 x)=3 \sin 3 x .
\end{gathered}
$$

