Quiz 5, Spring, 2013 - April 4

The quiz is worth 5 points. **Remove EVERYTHING from your desk except** this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

Find the solution of the Initial Value Problem $y'' + 9y = \sin 2x$, y(0) = 1, y'(0) = 0.

Answer. Of course you know that the general solution of y'' + 9y = 0 is $y = c_1 \cos 3x + c_2 \sin 3x$. Also, it is easy to see that $y_{\text{particular}} = \frac{1}{5} \sin 2x$ is a particular solution of the given DE. It follows that the general solution of the DE $y'' + 9y = \sin 2x$ is $y = c_1 \cos 3x + c_2 \sin 3x + \frac{1}{5} \sin 2x$. We must find c_1 and c_2 so that the Initial Conditions y(0) = 1 and y'(0) = 0 are also satisfied. We compute $y' = -3c_1 \sin 3x + 3c_2 \cos 3x + \frac{2}{5} \cos 2x$. Plug x = 0 into y and y' to obtain:

$$1 = y(0) = c_1$$
 and $0 = y'(0) = 3c_2 + \frac{2}{5}$.

We conclude that $c_1 = 1$ and $c_2 = -\frac{2}{15}$. Thus the answer is

$$y = \cos 3x - \frac{2}{15}\sin 3x + \frac{1}{5}\sin 2x.$$

Check. We take derivatives of $y=\cos 3x-\frac{2}{15}\sin 3x+\frac{1}{5}\sin 2x$ to obtain $y'=-3\sin 3x-\frac{2}{5}\cos 3x+\frac{2}{5}\cos 2x$ and $y''=-9\cos 3x+\frac{6}{5}\sin 3x-\frac{4}{5}\sin 2x$. It is clear that $y''+9y=3\sin 2x$. We plug 0 in for x to see that y(0)=1 and $y'(0)=-\frac{2}{5}+\frac{2}{5}=0$. \checkmark