$\qquad$

## No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you.

The quiz is worth 5 points. The solutions will be posted on my website later today.

## Quiz 5, March 20, 2024

Find the general solution of $y^{\prime \prime}+6 y^{\prime}+9 y=0$.

Solution. We try $y=e^{r x}$. We plug $y, y^{\prime}=r e^{r x}$ and $y^{\prime \prime}=r^{2} e^{r x}$ into the Differential Equation. We want

$$
r^{2} e^{r x}+6 r e^{r x}+9 e^{r x}=0
$$

We want $e^{r x}\left(r^{2}+6 r+9\right)=0$. If a product is zero, one of the factors must be zero. The function $e^{r x}$ is never zero; so we want $r^{2}+6 r+9=0$. We want $(r+3)^{2}=0$. It follows that $y=e^{-3 x}$ and $y=x e^{-3 x}$ are solutions of the given linear homogeneous Differential Equation with constant coefficients. The general solution of $y^{\prime \prime}+6 y^{\prime}+9 y=0$ is $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$.

Check. We plug

$$
\begin{aligned}
y & =c_{1} e^{-3 x}+c_{2} x e^{-3 x} \\
y^{\prime} & =-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x} \\
& =\left(-3 c_{1}+c_{2}\right) e^{-3 x}-3 c_{2} x e^{-3 x} \\
y^{\prime \prime} & =-3\left(-3 c_{1}+c_{2}\right) e^{-3 x}-3 c_{2} e^{-3 x}+9 c_{2} x e^{-3 x} \\
& =\left(9 c_{1}-6 c_{2}\right) e^{-3 x}+9 c_{2} x e^{-3 x}
\end{aligned}
$$

into $y^{\prime \prime}+6 y^{\prime}+9 y$ and obtain

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(\left(9 c_{1}-6 c_{2}\right) e^{-3 x}+9 c_{2} x e^{-3 x}\right) \\
+6\left(\left(-3 c_{1}+c_{2}\right) e^{-3 x}-3 c_{2} x e^{-3 x}\right) \\
+9\left(c_{1} e^{-3 x}+c_{2} x e^{-3 x}\right)
\end{array}\right. \\
& =\left[(9-18+9) c_{1}+(-6+6) c_{2}\right] e^{-3 x}+(9-18+9) c_{2} x e^{-3 x}=0 .
\end{aligned}
$$

