No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 5, March 20, 2024

Find the general solution of y'' + 6y' + 9y = 0.

Solution. We try $y = e^{rx}$. We plug $y, y' = re^{rx}$ and $y'' = r^2 e^{rx}$ into the Differential Equation. We want $r^2 e^{rx} + 6re^{rx} + 9e^{rx} = 0.$

We want $e^{rx}(r^2 + 6r + 9) = 0$. If a product is zero, one of the factors must be zero. The function e^{rx} is never zero; so we want $r^2 + 6r + 9 = 0$. We want $(r+3)^2 = 0$. It follows that $y = e^{-3x}$ and $y = xe^{-3x}$ are solutions of the given linear homogeneous Differential Equation with constant coefficients. The general solution of y'' + 6y' + 9y = 0 is $y = c_1e^{-3x} + c_2xe^{-3x}$.

Check. We plug

$$y = c_1 e^{-3x} + c_2 x e^{-3x}$$

$$y' = -3c_1 e^{-3x} + c_2 e^{-3x} - 3c_2 x e^{-3x}$$

$$= (-3c_1 + c_2)e^{-3x} - 3c_2 x e^{-3x}$$

$$y'' = -3(-3c_1 + c_2)e^{-3x} - 3c_2 e^{-3x} + 9c_2 x e^{-3x}$$

$$= (9c_1 - 6c_2)e^{-3x} + 9c_2 x e^{-3x}$$

into y'' + 6y' + 9y and obtain

$$\begin{cases} \left((9c_1 - 6c_2)e^{-3x} + 9c_2xe^{-3x} \right) \\ +6\left((-3c_1 + c_2)e^{-3x} - 3c_2xe^{-3x} \right) \\ +9\left(c_1e^{-3x} + c_2xe^{-3x} \right) \end{cases}$$

= $[(9 - 18 + 9)c_1 + (-6 + 6)c_2]e^{-3x} + (9 - 18 + 9)c_2xe^{-3x} = 0.\checkmark$