\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 5, November 1, 2023

Find a function y which satisfies the Differential Equation $y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}-6 y=0$ and the Initial conditions $y(0)=0, y^{\prime}(0)=0$, and $y^{\prime \prime}(0)=2$. Please notice that $y_{1}=e^{x}, y_{2}=e^{2 x}$, and $y_{3}=e^{3 x}$ all are solutions of the Differential Equation ${ }^{1} y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}-6 y=0$.

ANSWER: The functions y_{1}, y_{2}, and y_{3} are linearly independent. So the general solution of the third order linear DE with constant coefficients $y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}-6 y=0$ is $y=A e^{x}+B e^{2 x}+C e^{3 x}$. We find A, B, and C so that the initial conditions are satisfied. We compute $y^{\prime}=A e^{x}+2 B e^{2 x}+3 C e^{3 x}$ and $y^{\prime \prime}=A e^{x}+4 B e^{2 x}+9 C e^{3 x}$. We solve

$$
\left\{\begin{array}{l}
A e^{0}+B e^{0}+C e^{0}=0 \\
A e^{0}+2 B e^{0}+3 C e^{0}=0 \\
A e^{0}+4 B e^{0}+9 C e^{0}=3
\end{array}\right.
$$

simultaneously. We solve

$$
\left\{\begin{array}{l}
A+B+C=0 \\
A+2 B+3 C=0 \\
A+4 B+9 C=2
\end{array}\right.
$$

simultaneously. Add minus eq1 to eq2 and minus eq1 to eq3. We solve

$$
\left\{\begin{array}{c}
A+B+C=0 \\
B+2 C=0 \\
3 B+8 C=2
\end{array}\right.
$$

simultaneously. Add -3 eq2 to eq3. We solve

$$
\left\{\begin{array}{r}
A+B+C=0 \\
B+2 C=0 \\
2 C=2
\end{array}\right.
$$

We see that $C=1, B=-2$, and $A=1$. The solution is

$$
y=e^{x}-2 e^{2 x}+e^{3 x}
$$

[^0]
[^0]: ${ }^{1}$ Actually there is a typo in the statement of this problem. It should be $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$. This typo does not affect anything in finding A, B, and C. However, none of the functions y_{1}, y_{2}, or y_{3} are solutions of $y^{\prime \prime \prime}-6 y^{\prime \prime}-11 y^{\prime}-6 y=0$; they all are solutions of $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$.

