PRINT Your Name: \qquad
Quiz for September 22, 2016
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

1. The acceleration of a car is proportional to the difference between 250 $\mathrm{ft} / \mathrm{sec}$ and the velocity of the car. If this car can accelerate from 0 to $100 \mathrm{ft} / \mathrm{sec}$ in 10 seconds, how long will it take for the car to accelerate from rest to $150 \mathrm{ft} / \mathrm{sec}$?

Let $v(t)$ be the velocity of the car (measured in $\mathrm{ft} / \mathrm{sec}$) at time t seconds. We are told that $\frac{d v}{d t}=k(250-v)$. The initial condition is $v(0)=0$. We are told that $v(10)=100$. (This allows us to find k.) We are asked to find the time with $v(t)=150$. We integrate $\int \frac{d v}{250-v}=\int k d t$ to see that

$$
\begin{equation*}
-\ln (250-v)=k t+C \tag{}
\end{equation*}
$$

The initial condition $v(0)=0$ tells us that $-\ln 250=C$. We plug in $v(10)=100$ into $\left(^{*}\right)$ to see that $-\ln (250-100)=10 k-\ln 250$. It follows that

$$
\begin{gathered}
\ln 250-\ln (150)=10 k \\
\ln \frac{250}{150}=10 k
\end{gathered}
$$

so, $\frac{\ln \frac{5}{3}}{10}=k$. We now find the time when $v(t)=150$. Again, we use $(*)$. We solve $-\ln (250-150)=k t+C$. We solve $-\ln (100)=\left(\frac{\ln \frac{5}{3}}{10}\right) t-\ln 250$. We see that $t=\frac{\ln 250-\ln 100}{\frac{\ln \frac{5}{3}}{10}}=10 \frac{\ln \frac{250}{100}}{\ln \frac{5}{3}}=10 \frac{\ln \frac{5}{2}}{\ln \frac{5}{3}} \sec$.

