PRINT Your Name: \qquad
Quiz 5, Fall, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer. Check your answer

Suppose that a motorboat is moving at $40 \mathrm{ft} / \mathrm{sec}$ when its motor suddenly quits, and that 10 seconds later the boat has slowed to $20 \mathrm{ft} / \mathrm{sec}$. Assume that the resistance the boat encounters while coasting is proportional to its velocity. How far will the boat coast in all?

We are told $d v / d t=-k v, \quad v(0)=40, v(10)=20, x(0)=0$. We want $\lim _{t \rightarrow \infty} x(t)$. We integrate $d v / v=-k d t$ to learn $\ln |v|=-k t+C$. So, $v=K e^{-k t}$. Plug in $t=0$ to learn that $40=K$. Plug in $t=10$ to learn that $(\ln 2) / 10=k$. Integrate again to learn that $x(t)=(K /(-k)) e^{-k t}+C_{1}$. Plug in $t=0$ to learn $x(t)=(K /(-k))\left(e^{-k t}-1\right)$. Take $\lim _{t \rightarrow \infty}$ to learn $\lim _{t \rightarrow \infty} x(t)=(K / k)=400 /(\ln 2) \mathrm{ft}$.

