Quiz 4, February 16, 2017, 1:15 class

Solve $x y^{\prime}=y+2 \sqrt{x y}$. Express your answer in the form $y=y(x)$. Please check your answer. ANSWER: We use a homogeneous substitution. Let $v=\frac{y}{x}$. It follows that $x v=y$ and $x \frac{d v}{d x}+v=\frac{d y}{d x}$. The differential equation is

$$
\begin{gathered}
y^{\prime}=\frac{y}{x}+2 \frac{\sqrt{x y}}{x} \\
y^{\prime}=\frac{y}{x}+2 \sqrt{\frac{y}{x}} \\
x \frac{d v}{d x}+v=v+2 \sqrt{v} \\
\int \frac{v^{-1 / 2}}{2} d v=\int \frac{1}{x} d x \\
\sqrt{v}=\ln |x|+C \\
v=(\ln |x|+C)^{2} \\
y=x(\ln |x|+C)^{2}
\end{gathered}
$$

Check. We assume $0<x$ and check $y=x(\ln (x)+C)^{2}$. When we plug our proposed answer into the left side of the DE we obtain

$$
x y^{\prime}=x\left[\left(2 x(\ln (x)+C) \frac{1}{x}+(\ln (x)+C)^{2}\right]=\left(2 x(\ln (x)+C)+x(\ln (x)+C)^{2} .\right.\right.
$$

When we plug our proposed answer into the right side of the DE we obtain

$$
\left.y+2 \sqrt{x y}=x(\ln (x)+C)^{2}+2 \sqrt{x x(\ln (x)+C)^{2}}=x(\ln (x)+C)^{2}+2 x(\ln (x)+C)\right) .
$$

These agree. Our answer is correct.

