\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 4, October 11, 2023

Let $P(t)$ represent the number of alligators in a certain park at time t. Suppose further that $P(t)$ satisfies the Differential Equation

$$
\frac{d P}{d t}=\frac{B_{0}}{P_{0}^{2}} P^{2}-\frac{D_{0}}{P_{0}} P
$$

where P_{0} is the alligator population at time zero, B_{0} is the birth rate at time zero, and D_{0} is the death rate at time zero. The solution of the Differential Equation is

$$
P(t)=\frac{M}{1-\frac{P_{0}-M}{P_{0}} e^{\frac{D_{0} t}{P_{0}}}},
$$

where $M=\frac{D_{0} P_{0}}{B_{0}}$. Use this value of $P(t)$. I do not expect you to solve the Differential equation or even to verify that the given solution is correct.

Suppose that $P_{0}=100$ alligators, $B_{0}=10$ alligators per month, and $D_{0}=9$ alligators per month. When will the alligator population reach ten times M ?

ANSWER: Observe that $P(t)=10 M$ when $10 M=\frac{M}{1-\frac{P_{0}-M}{P_{0}} e^{\frac{D_{0} t}{P_{0}}}}$. Multiply both sides by $\frac{1-\frac{P_{0}-M}{P_{0}} e^{\frac{D_{0} t}{P_{0}}}}{10 M}$ to obtain

$$
\begin{gathered}
1-\frac{P_{0}-M}{P_{0}} e^{\frac{D_{0} t}{P_{0}}}=\frac{1}{10} . \\
\frac{9}{10}=\frac{P_{0}-M}{P_{0}} e^{\frac{D_{0} t}{P_{0}}} \\
\frac{9 P_{0}}{10\left(P_{0}-M\right)}=e^{\frac{D_{0} t}{P_{0}}} \\
\frac{P_{0}}{D_{0}} \ln \frac{9 P_{0}}{10\left(P_{0}-M\right)}=t \\
\frac{100}{9} \ln \frac{900}{10(100-90)}=t \\
\frac{100}{9} \ln 9=t
\end{gathered}
$$

The population will reach $10 M$ after $\frac{100}{9} \ln 9$ months.

