Please PRINT your name ____

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Math 242, Quiz 3, January 29, 2025

Use Euler's method to approximate $y(\frac{1}{2})$ where y is a solution of the Initial Value Problem

$$y' = -y$$
 and $y(0) = 2$.

Use two steps only; in other words, take $h = \frac{1}{4}$.

Solution. We put the picture on the next page. The number y_2 is our approximation of $y(\frac{1}{2})$.

We first find y_1 . The line segment from (0,2) to $(\frac{1}{4}, y_1)$ has slope equal to $m_1 = -2$:

$$\frac{y_1 - 2}{\frac{1}{4}} = -2, \quad y_1 = 2 - \frac{1}{2} = \frac{3}{2}.$$

Now we find y_2 . The line segment from $(\frac{1}{4}, \frac{3}{2})$ to $(\frac{1}{2}, y_2)$ has slope equal to $m_2 = -y_1 = -\frac{3}{2}$:

$$\frac{y_2 - \frac{3}{2}}{\frac{1}{4}} = -\frac{3}{2}, \quad y_2 = \frac{3}{2} - \frac{3}{2}\frac{1}{4} = \frac{12}{8} - \frac{3}{8} = \frac{9}{8}.$$

Euler's Method, with
$$n = 2$$
, gives $\frac{9}{8}$ as the approximation of $y(\frac{1}{2})$.

Picture for 2.4 Number 1

The Smooth Curve is the real solution of the imitial Value Problem y' = -y $y(0) = \lambda$ (*) The Piece-wise linear curve is the Euler Method Approximation, of the solution of (*) made using two steps. of the solution of (*) made using two steps. M_1 is the slope of the line segment from (0,2) to $(\frac{1}{4}, \frac{1}{3}, \frac{1}{3})$ M_2 is the slope of the line segment from $(\frac{1}{4}, \frac{1}{3})$ to $(\frac{1}{2}, \frac{1}{3}, \frac{1}{3})$ We made $M_1 = f(0,2)$ and $M_2 = f(\frac{1}{4}, \frac{1}{3}, \frac{1}{3})$ where $F(x_1y_1)$ is the right side of the Differential Equation in (*) $F(x_1y_1)$ is the right side of the Differential Equation in (*) $M_1 = f(\frac{1}{3}, \frac{1}{3}) = -\lambda$ $M_2 = f(\frac{1}{4}, \frac{1}{3}) = -\lambda$