\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 3, February 14, 2024
Solve $y^{\prime}=y+y^{3}$.

ANSWER:

I will treat this problem as a Bernoulli Equation. (One could also solve the Differential Equation by separating the variables.)

Let $v=y^{1-3}=y^{-2}$. Observe that $\frac{d v}{d x}=-2 y^{-3} \frac{d y}{d x}$. Multiply both sides of the original equation by $-2 y^{-3}$ to obtain

$$
\begin{gathered}
-2 y^{-3} y^{\prime}=-2 y^{-2}-2 \\
\frac{d v}{d x}=-2 v-2 \\
(*) \quad \frac{d v}{d x}+2 v=-2
\end{gathered}
$$

This is a First Order Linear Differential Equation of the form $v^{\prime}+P(x) v=Q(x)$, with $P(x)=2$. We let $\mu(x)=e^{\int P(x) d x}=e^{\int 2 d x}=e^{2 x}$. Multiply both sides equation (*) by $e^{2 x}$ to obtain

$$
(* *) \quad e^{2 x} \frac{d v}{d x}+2 e^{2 x} v=-2 e^{2 x}
$$

The left side of $\left({ }^{\left({ }^{*}\right)}\right.$ is equal to $\frac{d}{d x}\left(e^{2 x} v\right)$; so, $\left({ }^{(* *)}\right.$ is

$$
\frac{d}{d x}\left(e^{2 x} v\right)=-2 e^{2 x}
$$

Integrate both sides to obtain:

$$
e^{2 x} v=-e^{2 x}+C
$$

Multiply both sides by $e^{-2 x}$ to obtain:

$$
\begin{gathered}
v=-1+C e^{-2 x} \\
y^{-2}=-1+C e^{-2 x} \\
y=\left(-1+C e^{-2 x}\right)^{-1 / 2} .
\end{gathered}
$$

Check: We calculate

$$
y^{\prime}=(-1 / 2)\left(-1+C e^{-2 x}\right)^{-3 / 2}\left(-2 C e^{-2 x}\right)=C e^{-2 x}\left(-1+C e^{-2 x}\right)^{-3 / 2}
$$

We also calculate

$$
\begin{aligned}
y+y^{3} & =\left(-1+C e^{-2 x}\right)^{-1 / 2}+\left(-1+C e^{-2 x}\right)^{-3 / 2} \\
& =\left(-1+C e^{-2 x}\right)^{-3 / 2}\left(-1+C e^{-2 x}+1\right) \\
& =C e^{-2 x}\left(-1+C e^{-2 x}\right)^{-3 / 2} .
\end{aligned}
$$

We see that y^{\prime} is equal to $y+y^{3}$. Our answer is correct.

