Quiz 3, February 9, 2017, 1:15 class

Solve $y^{\prime}=y+y^{3}$. Express your answer in the form $y=y(x)$. Please check your answer.
ANSWER: This is a Bernoulli equation. Let $v=y^{1-3}=y^{-2}$, Compute $\frac{d v}{d x}=-2 y^{-3} \frac{d y}{d x}$. Multiply both sides of the differential equation by $-2 y^{-3}$ to obtain

$$
-2 y^{-3} \frac{d y}{d x}=-2 y^{-2}-2
$$

Replace $-2 y^{-3} \frac{d y}{d x}$ with $\frac{d v}{d x}$ and y^{-2} with v. The DE has become

$$
\frac{d v}{d x}+2 v=-2
$$

which is a first order linear DE. Multiply both sides by $\mu=e^{\int 2 d x}=e^{2 x}$ to obtain

$$
e^{2 x} \frac{d v}{d x}+2 e^{2 x} v=-2 e^{2 x}
$$

which is the same as

$$
\frac{d}{d x}\left(e^{2 x} v\right)=-2 e^{2 x}
$$

Apply $\int-d x$ to both sides

$$
\begin{gathered}
e^{2 x} v=-e^{2 x}+C . \\
v=-1+C e^{-2 x} \\
y^{-2}=-1+C e^{-2 x} \\
y=\frac{ \pm 1}{\sqrt{-1+C e^{-2 x}}} .
\end{gathered}
$$

Check. We check $y=\frac{1}{\sqrt{-1+C e^{-2 x}}}$. We compute

$$
y^{\prime}=\left(\frac{-1}{2}\right)\left(-1+C e^{-2 x}\right)^{-3 / 2}\left(-2 C e^{-2 x}\right)=\frac{C e^{-2 x}}{\left(-1+C e^{-2 x}\right)^{3 / 2}} .
$$

We also compute

$$
y+y^{3}=\frac{1}{\sqrt{-1+C e^{-2 x}}}+\frac{1}{\left(\sqrt{-1+C e^{-2 x}}\right)^{3}}=\frac{\left(-1+C e^{-2 x}\right)+1}{\left(\sqrt{-1+C e^{-2 x}}\right)^{3}}=\frac{C e^{-2 x}}{\left(\sqrt{-1+C e^{-2 x}}\right)^{3}} .
$$

These expressions are equal. Our answer is correct.

