Quiz 3, February 9, 2017, 11:40 class

Solve $y^{\prime}=(4 x+y)^{2}$. Express your answer in the form $y=y(x)$. Please check your answer. ANSWER: We make a linear substitution $v=4 x+y$. We calculate that $\frac{d v}{d x}=4+\frac{d y}{d x}$. Our problem now is

$$
v^{\prime}-4=v^{2}
$$

We separate the variables:

$$
\begin{gathered}
\int \frac{d v}{v^{2}+4}=\int d x \\
\frac{1}{2} \arctan \frac{v}{2}=x+C \\
\arctan \frac{v}{2}=2 x+2 C
\end{gathered}
$$

Let $K=2 C$.

$$
\begin{gathered}
\frac{v}{2}=\tan (2 x+K) \\
v=2 \tan (2 x+K) \\
4 x+y=2 \tan (2 x+K) \\
y=2 \tan (2 x+K)-4 x
\end{gathered}
$$

Check. We compute

$$
y^{\prime}=4 \sec ^{2}(2 x+K)-4
$$

We also compute

$$
(4 x+y)^{2}=(4 x+2 \tan (2 x+K)-4 x)^{2}=(2 \tan (2 x+K))^{2}=4 \tan ^{2}(2 x+K)
$$

Of course, $\sin ^{2} \theta+\cos ^{2} \theta=1$, so $\tan ^{2} \theta+1=\sec ^{2} \theta$. So,

$$
(4 x+y)^{2}=4\left(\sec ^{2}(4 x+y)-1\right)
$$

and this agrees with the value of y^{\prime}. We have done the problem correctly.

