PRINT Your Name: \qquad

Quiz for February 26, 2013

The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.

1. Consider a population $P(t)$ which satisfies the Differential Equation

$$
\begin{equation*}
\frac{d P}{d t}=a P^{2}-b P \tag{1}
\end{equation*}
$$

where a and b are positive constants. Let $B(t)=a P(t)^{2}$ and $D(t)=b P(t)$. Call $B(t)$ the birth rate at time t and $D(t)$ the death rate at time t. When we first thought about population models we learned that $P(t)=0$ and $P(t)=M$ are equilibrium solutions for the Differential Equation

$$
\begin{equation*}
\frac{d P}{d t}=k P(P-M) \tag{2}
\end{equation*}
$$

where k and M are positive constants. We also learned that the solution of (2) is

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{k M t}}
$$

(a) Express the " M " of (2) in terms of the data $B(0), D(0)$, and $P(0)$ from (1).
(b) Suppose that some population is modeled by (1) and that the initial population is 100 and there are 10 births per month and 9 deaths per month occurring at $t=0$. How many months does it take until $P(t)$ reaches 10 times the threshold population M ?
First we do (a). We write (1) in the form $\frac{d P}{d t}=a P\left(P-\frac{b}{a}\right)$. We now see that $M=\frac{b}{a}$. On the other hand, when we put $t=0$ into the equations $B(t)=a P(t)^{2}$ and $D(t)=b P(t)$, we learn that the constants a and b are $\frac{B(0)}{P(0)^{2}}=a$ and $\frac{D(0)}{P(0)}=b$; and therefore,

$$
M=\frac{b}{a}=\frac{\frac{D(0)}{P(0)}}{\frac{B(0)}{P(0)^{2}}}=\frac{D(0) P(0)}{B(0)} .
$$

Now we do (b). We are told that $P(0)=100, B(0)=10, D(0)=9$, $M=\frac{D(0) P(0)}{B(0)}=\frac{9 \cdot 100}{10}=90$, and $k M=b=\frac{D(0)}{P(0)}=\frac{9}{100}$. So we know that

$$
P(t)=\frac{M P(0)}{P(0)+(M-P(0)) e^{k M t}}=\frac{90 \cdot 100}{100+(90-100) e^{\frac{9 t}{100}}} .
$$

We are supposed to find t with $P(t)=900$. We solve the following equation for t :

$$
\begin{gathered}
900=\frac{90 \cdot 100}{100+(90-100) e^{\frac{9 t}{100}}} \\
1=\frac{10}{100+(90-100) e^{\frac{9 t}{100}}} \\
100+(90-100) e^{\frac{9 t}{100}}=10 \\
-10 e^{\frac{9 t}{100}}=-90 \\
e^{\frac{9 t}{100}}=9 \\
\frac{9 t}{100}=\ln 9
\end{gathered}
$$

The population hits 900 when the time is $\frac{100}{9} \ln 9$ months.

