\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 3, October 4, 2023
Solve the Differential Equation

$$
\frac{d y}{d x}=(4 x+y)^{2}
$$

Write your answer in the form $y=y(x)$. If you have time, please check that your answer is correct.

ANSWER: We make a linear substitution. Let $v=4 x+y$. It follows that $\frac{d v}{d x}=4+\frac{d y}{d x}$. We solve

$$
\frac{d v}{d x}-4=v^{2}
$$

by separating the variables:

$$
\begin{aligned}
& \frac{d v}{d x}=v^{2}+4 \\
& \frac{d v}{v^{2}+4}=d x
\end{aligned}
$$

Integrate both sides:

$$
\begin{gathered}
\int \frac{d v}{v^{2}+4}=\int d x \\
\frac{1}{2} \arctan \left(\frac{v}{2}\right)=x+C \\
\arctan \left(\frac{v}{2}\right)=2 x+2 C
\end{gathered}
$$

(Let $K=2 C$.)

$$
\begin{gathered}
\frac{v}{2}=\tan (2 x+K) \\
v=2 \tan (2 x+K) \\
4 x+y=2 \tan (2 x+K) \\
y=-4 x+2 \tan (2 x+K) .
\end{gathered}
$$

Check: We compute

$$
\frac{d y}{d x}=-4+2 \sec ^{2}(2 x+K) 2=4\left(\sec ^{2}(2 x+K)-1\right)=4 \tan ^{2}(2 x+K)
$$

On the other hand, $(4 x+y)^{2}=(2 \tan (2 x+K))^{2}=4 \tan ^{2}(2 x+K) . \checkmark$

