PRINT Your Name: \qquad
Quiz for January 19, 2012
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer.
Suppose that a car skids 15 meters if it is moving at $50 \mathrm{~km} / \mathrm{hr}$ when the brakes are applied. Assuming that the car has the same constant deceleration, how far will it skid if it is moving at $100 \mathrm{~km} / \mathrm{hr}$ when the brakes are applied?

ANSWER: Let $x(t)$ be the position of the car at time t. Measure t in hours and x in km . We take $x(0)=0$. We are told that $x^{\prime \prime}(t)=-k$ for some positive constant k. For the first car, we have $x^{\prime}(0)=50$ and $x($ when the car stops $)=.015$. For the second car, we have $x^{\prime}(0)=100$ and we are supposed to find x (when the car stops) .

For the first car: $x^{\prime}=-k t+50$ and $x=-k t^{2} / 2+50 t$. The car stops when $x^{\prime}(t)=0 ;$ so, $t=50 / k$ and

$$
\begin{gathered}
.015=x(\text { when the car stops })=x(50 / k)=-k(50 / k)^{2} / 2+50(50 / k) \\
=\frac{-(50)^{2} / 2+(50)^{2}}{k}=\frac{50^{2}}{2 k}
\end{gathered}
$$

We have learned that $k=(50)^{2} / 2(.015)$.
Now we consider car 2 . We have $x^{\prime}=-k t+100$ and $x=-k t^{2} / 2+100 t$. The car stops when $x^{\prime}(t)=0$; so, $t=100 / k$ and

$$
\begin{aligned}
& x(\text { when the car stops })=x(100 / k)=-k(100 / k)^{2} / 2+100(100 / k)=\frac{100^{2}}{2 k} \\
& =\frac{100^{2}}{2} \frac{2(.015)}{(50)^{2}}=4(.015)=.06 \mathrm{~km}=60 \text { meters. }
\end{aligned}
$$

