PRINT Your Name: \qquad
Quiz 2, Spring, 2013
The quiz is worth 5 points. Remove EVERYTHING from your desk except this quiz and a pen or pencil. SHOW your work. Express your work in a neat and coherent manner. BOX your answer. Check your answer. The solution will be posted later today.
Solve the initial value problem $x y^{\prime}=3 y+x^{4} \cos x, y(2 \pi)=0$
ANSWER: This is a first order linear problem: $y^{\prime}-\frac{3}{x} y=x^{3} \cos x$. It has the form $y^{\prime}+P(x) y=Q(x)$, where $P(x)=-\frac{3}{x}$ and $Q(x)=x^{3} \cos x$. We multiply both sides by

$$
e^{\int P(x) d x}=e^{\int \frac{-3}{x} d x}=e^{-3 \ln x}=x^{-3}
$$

to obtain

$$
x^{-3} y^{\prime}-3 x^{-4} y=\cos x
$$

Thus,

$$
\frac{d}{d x}\left(x^{-3} y\right)=\cos x
$$

Integrate both sides with respect to x to obtain

$$
x^{-3} y=\sin x+C
$$

Plug in 2π for x to see that

$$
(2 \pi)^{-3} 0=0+C ;
$$

so $C=0$. The solution of this IVP is

$$
y=x^{3} \sin x
$$

Check. We see that $y(2 \pi)=(2 \pi)^{3} \sin (2 \pi)=0$ as desired. Now we plug the proposed answer into the DE. The Left Hand Side, $x y^{\prime}$, becomes

$$
\left.x\left(x^{3} \cos x+3 x^{2} \sin x\right)=x^{4} \cos x+3 x^{3} \sin x\right)
$$

The Right Hand Side, $3 y+x^{4} \cos x$, becomes:

$$
3 x^{3} \sin x+x^{4} \cos x
$$

These agree, so our proposed answer satisfies the DE.

