No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 2, January 27, 2021

Consider the Initial Value Problem y' = -y, y(0) = 2. Use **Euler's Method** to approximate $y(\frac{1}{2})$. Take the step size to be $h = \frac{1}{4}$.

ANSWER: Let f(x,y) = -y, $(x_0, y_0) = (0,2)$, $x_1 = \frac{1}{4}$, and $x_2 = \frac{1}{2}$. Define y_1 so that the slope of the line joining (x_0, y_0) to (x_1, y_1) is $f(x_0, y_0)$. Define y_2 so that the slope of the line joining (x_1, y_1) to (x_2, y_2) is $f(x_1, y_1)$. Then y_2 is our approximation of $y(\frac{1}{2})$.

At any rate

$$\frac{y_1-2}{\frac{1}{4}} = \frac{y_1-y_0}{x_1-x_0} = f(x_0, y_0) = -2;$$

so,

$$y_1 = -\frac{1}{2} + 2 = \frac{3}{2};$$

and

$$\frac{y_2 - \frac{3}{2}}{\frac{1}{4}} = \frac{y_2 - y_1}{x_2 - x_1} = f(x_1, y_1) = -\frac{3}{2}.$$

Thus,

$$y_2 = -\frac{3}{8} + \frac{3}{2} = \frac{9}{8}.$$

Our approximation of $y(\frac{1}{2})$ is $y_2 = \frac{9}{8}.$