\qquad
The quiz is worth 5 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.

The solution will be posted later today.

No Calculators, computers, smart phones, notes, etc.

Quiz 2, January 30, 2018

A motor boat is moving at 40 feet per second when its motor suddenly quits and 10 seconds later the boat has slowed to 20 feet/second. The only force acting on the boat is resistance and resistance is proportional to velocity. How far will the boat coast in all?

Answer: Let $x(t)$ equal the position of the boat at time t, where t measures the amount of time since the motor quit. We are told

$$
x^{\prime \prime}=-k x^{\prime}, \quad x^{\prime}(0)=40, \quad x^{\prime}(10)=20, \quad \text { and } \quad x(0)=0
$$

for some positive constant k. If you like, let $v=x^{\prime}$. Separate the variables in $\frac{d v}{d t}=-k v$ and integrate $\int \frac{d v}{v}=\int-k d t$:

$$
\begin{aligned}
\ln |v| & =-k t+C \\
|v| & =e^{-k t+C} \\
v & =K e^{-k t} \\
x^{\prime} & =K e^{-k t}
\end{aligned}
$$

Plug in $t=0$ to learn $K=40$. So,

$$
x^{\prime}=40 e^{-k t}
$$

Plug in $t=10$ to learn

$$
\begin{gathered}
20=40 e^{-10 k} \\
\frac{1}{2}=e^{-10 k} \\
-\ln 2=-10 k \\
\frac{\ln 2}{10}=k
\end{gathered}
$$

Integrate with respect to t to see that

$$
x=\frac{40}{-k} e^{-k t}+C_{1}
$$

Plug in $t=0$ to see that

$$
0=\frac{40}{-k}+C_{1}
$$

so $C_{1}=\frac{40}{k}$ and $x(t)=\frac{40}{k}-\frac{40}{-k} e^{-k t}$. We see that x^{\prime} is never zero; but $\lim _{t \rightarrow \infty} x^{\prime}=0$. The total distance traveled by the boat is

$$
\lim _{t \rightarrow \infty} x=\lim _{t \rightarrow \infty} \frac{40}{k}-\frac{40}{-k} e^{-k t}=\frac{40}{k}=\frac{40}{\frac{\ln 2}{10}}=\frac{400}{\ln 2} \text { feet } .
$$

