Quiz 2, January 24, 2017, 1:15 class

Suppose that a car starts from rest, its engine providing an acceleration of $10 \mathrm{feet} / \mathrm{second}^{2}$, while air resistance provides $1 / 10$ feet/second ${ }^{2}$ of deceleration for each foot per second of the car's velocity.
(a) Find the car's maximum possible (limiting) velocity.
(b) Find how long it takes the car to attain 90% of its limiting velocity, and how far it travels while doing so.
ANSWER: Let $v(t)$ be the velocity of the car at time t, where distance is measured in feet and time in seconds. We are interested in the Initial Value Problem:

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=10-\frac{1}{10} v \\
v(0)=0
\end{array}\right.
$$

We first find the formula for v as a function of t. Separate the variables and integrate:

$$
\begin{gathered}
\int \frac{d v}{10-\frac{1}{10} v}=\int d t \\
-10 \ln \left|10-\frac{1}{10} v\right|=t+C \\
\ln \left|10-\frac{1}{10} v\right|=\frac{t}{-10}+\frac{C}{-10} \\
\left|10-\frac{1}{10} v\right|=e^{\frac{C}{-10}} e^{\frac{t}{-10}} \\
10-\frac{1}{10} v= \pm e^{-\frac{C}{-10}} e^{\frac{t}{-10}}
\end{gathered}
$$

Let $K= \pm e^{\frac{C}{-10}}$.

$$
\begin{aligned}
& 10-\frac{1}{10} v=K e^{\frac{t}{-10}} \\
& 10-K e^{\frac{t}{-10}}=\frac{1}{10} v
\end{aligned}
$$

When $t=0$, then $v=0$; so, $10-K=0$ and $K=10$.

$$
10-10 e^{\frac{t}{-10}}=\frac{1}{10} v
$$

Multiply both sides by 10

$$
100\left(1-e^{\frac{t}{-10}}\right)=v
$$

We have finally accomplished our first goal.
The answer to (a) is $\lim _{t \rightarrow \infty} v=\lim _{t \rightarrow \infty} 100\left(1-e^{\frac{t}{-10}}\right)=100$ feet/second
Now we do (b). The car reaches 90 feet/second, when

$$
\begin{gathered}
100\left(1-e^{\frac{t}{-10}}\right)=90 \\
1-e^{\frac{t}{-10}}=\frac{9}{10} \\
1-\frac{9}{10}=e^{\frac{t}{-10}} \\
\ln \left(\frac{1}{10}\right)=\frac{t}{-10}
\end{gathered}
$$

$10 \ln 10$ seconds $=t$

We used $\ln \frac{1}{10}=-\ln 10$.
The position of the car at time t is

$$
\begin{aligned}
x(t)= & \int v(t) d t=\int 100\left(1-e^{\frac{t}{-10}}\right) d t \\
& =100\left(t+10 e^{\frac{t}{-10}}\right)+c_{2}
\end{aligned}
$$

If $x(0)=0$, then $0=1000+c_{2}$ and $c_{2}=-1000$. Thus, the position of the car at time t is

$$
x(t)=100\left(t+10 e^{\frac{t}{-10}}\right)-1000
$$

The position of the car at time $10 \ln 10$ seconds is

$$
\begin{aligned}
& x(10 \ln 10)=100\left(10 \ln 10+10 e^{\frac{10 \ln 10}{-10}}\right)-1000 \\
& =1000 \ln 10+\frac{1000}{10}-1000=1000 \ln 10-900
\end{aligned}
$$

The maximum velocity of the car is $100 \mathrm{f} / \mathrm{s}$. The car reaches the velocity of $90 \mathrm{f} / \mathrm{s}$ after $10 \ln 10$ seconds. The car has traveled $1000 \ln 10-900$ feet before it reaches the velocity of $90 \mathrm{f} / \mathrm{s}$.

