## Quiz 2, January 24, 2017, 11:40 class

Consider the Initial Value Problem $y^{\prime}=-y, y(0)=2$. Use Euler's Method to approximate $y\left(\frac{1}{2}\right)$. Take the step size to be $h=\frac{1}{4}$.
ANSWER: Let $f(x, y)=-y,\left(x_{0}, y_{0}\right)=(0,2), x_{1}=\frac{1}{4}$, and $x_{2}=\frac{1}{2}$. Define $y_{1}$ so that the slope of the line joining $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ is $f\left(x_{0}, y_{0}\right)$. Define $y_{2}$ so that the slope of the line joining $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is $f\left(x_{1}, y_{1}\right)$. Then $y_{2}$ is our approximation of $y\left(\frac{1}{2}\right)$.

At any rate

$$
\frac{y_{1}-2}{\frac{1}{4}}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=f\left(x_{0}, y_{0}\right)=-2 ;
$$

so,

$$
y_{1}=-\frac{1}{2}+2=\frac{3}{2} ;
$$

and

$$
\frac{y_{2}-\frac{3}{2}}{\frac{1}{4}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=f\left(x_{1}, y_{1}\right)=-\frac{3}{2} .
$$

Thus,

$$
y_{2}=-\frac{3}{8}+\frac{3}{2}=\frac{9}{8} .
$$

Our approximation of $y\left(\frac{1}{2}\right)$ is $y_{2}=\frac{9}{8}$.

