\qquad
No calculators, cell phones, computers, notes, etc.
Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 2, September 27, 2023
Solve the Initial Value Problem

$$
y^{\prime}+y=e^{x} \quad \text { and } \quad y(0)=1 .
$$

Check that your answer is correct.
ANSWER: This is a first order linear problem of the form

$$
y^{\prime}+P(x) y=Q(x)
$$

The trick is to multiply both sides of the equation by

$$
\mu(x)=e^{\int P(x) d x}
$$

Our $P(x)$ is equal to 1 ; so our

$$
\mu(x)=e^{\int 1 d x}=e^{x} .
$$

We multiply both sides by $\mu(x)$ to obtain

$$
e^{x} y^{\prime}+e^{x} y=e^{2 x}
$$

Notice that the left side is equal to

$$
\frac{d}{d x}\left(e^{x} y\right)
$$

So we must solve

$$
\frac{d}{d x}\left(e^{x} y\right)=e^{2 x}
$$

We integrate both sides with respect to x. We obtain

$$
e^{x} y=\frac{1}{2} e^{2 x}+C
$$

We use the initial condition $y(0)=1$ to find C.

$$
e^{0}(1)=\frac{1}{2} e^{0}+C .
$$

We see that $C=\frac{1}{2}$. The answer is

$$
e^{x} y=\frac{1}{2} e^{2 x}+\frac{1}{2}
$$

Divide both sides by e^{x} :

$$
y=\frac{1}{2} \frac{\left(e^{2 x}+1\right)}{e^{x}} .
$$

That is a fine answer. It might be prettier in the form

$$
y=\frac{\left(e^{x}+e^{-x}\right)}{2}
$$

Check. $y(0)=\frac{1+1}{2}=1 \checkmark$.
Also,

$$
y^{\prime}+y=\frac{\left(e^{x}-e^{-x}\right)}{2}+\frac{\left(e^{x}+e^{-x}\right)}{2}=e^{x}
$$

